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Preface

Physics f
and
Ebconomics

Although the contents of this issue are directly
addressed to crucial problems centering around
present-day physics, the more urgent and broader
relevance of the material is located within present
international discussions concerning the International
Development Bank program (IDB) for a ‘“‘new world
economic order.”’ As this material is being circulated
in a political journal — rather than one of the standard
physicists’ publications -- some explanation to the
layman-reader of the broader implications is plainly
required. |

Summary reports concerning the items and their
pre-publishing history sets the stage for the appro-
priate, clarifying remarks which then follow.

The contents of this issue are English translations of

Georg Cantor’s revolutionary 1883 Grundlagen... and
some correlated selections from G. Riemann, together

with an extended prefatory dissertation by Uwe
Parpart. The included, most newsworthy feature of
Parpart’s dissertation is the demonstration that
Einstein’s blunders concerning General Relativity

involve an included point of elementary illiteracy.

which ought to have been noted and corrected by any
of a number of specialists during the past half-
century. _

To put the matter in concise, technical language: as
Weyl includes the blunder in his authoritative Space,
Time, Matter, although Einstein sets out the correct
intention to adopt the standpoint of Riemannian non-
Euclidean conceptions of manifolds, thus attempting
to free physics of Euclidean-Lagrangian metaphysical
corruptions, the attempt to erect a mathematical
structure for that effort was itself flatly corrupted in
two interconnected ways. First, the introduction of
what are to-be termed affine assumptions concerning
physical microspace poisoned the entire effort with
nothing but a devastating regression toward
Euclidean (or, more relevantly, Kantian) forms of
axiomatic apriorism — embedding in the structure g
pervasive assumption absolutely antagonistic to the
relativistic principle.

Second, although Einstein, Weyl, et al. presumed to
premise the effort upon the preceding achievements of

- Riemann, they considered only the simple (Gauss-

like) cases of a Riemannian manifold, ignoring the
existence of higher-order manifolds and the special
case of nested higher-order manifolds. This two-fold
illiteracy respecting the sources of mathematical

‘knowledge upon which they drew ensured the vicious

failure of the entire enterprise.
Parpart’s critical treatment of such outstanding
blunders has the effect of clearing away a key part of

‘the accumulated intellectual rubbish which has

blocked fundamental progress in the study of physical
fields. “ ]

Although that implication of the Riemann and
Cantor material was recognized from the outset of

~ Parpart’s approximately five-year preparation of the

paper published here, the production of a physics-
oriented prefatory treatment was not the originally
intended emphasis of the effort. Thereby, so to speak,
hangs our tale.

Lyndon LaRouche’'s pioneering achievements in-
Marxian economics and epistemology of the 1955-1961
period were most significantly influenced by the
conception of Riemann and Cantor underlined in this
issue’s contents. Not Riemann plus Cantor, but

‘Riemann as understood retrospectively from the

standpoint represented by Cantor’s elaboration of the
notion of the “‘transfinite.”” LaRouche’s solution of the’
paradox of ‘“‘extended simple reproduction’ (the last
chapter of Volume II of Marx’s 'Capital), the
relevance of the notion of nested higherj-order mani-
folds to the decisive error in Hegel’s Phenomenology
and Science of Logic, and the redefinition of negen-
tropy for uses in ecology and economics were all in-
stances in which there was a large debt to Riemann-

_Cantor, both directly and because of provocative

stimulus not otherwise so enjoyed. Since this influence
of Riemann-Cantor is significantly embedded in
LaRouche’s' economic work and so forth, it was the
obvious duty of the Labor Committees to clarify public
knowledge on this aspect of our theoretical develop-

‘ment at some suitable opportunity.

This mandatory public clarification faced a special
obstacle in the fact that Cantor’s most significant
writing was not available in English translation.
Worse, to the extent that his writings were known
among professionals, the interpretation was usually
wretched. The respect generally accorded the
epistemologically crude Principia Mathematica. of
Russell and Whitehead is in itself ample proof that
most professionals lack the rudiments of competence
concerning Cantor’s notion of the transfinite and
concerning cognate features of Riemann’s work on
manifolds. For related reasons, the reciprocal inter-
dependence of Riemann and Cantor for a theory of



manifolds is generally ignored in the same circles.
For these reasons, it would not have been appro-
priate to publish merely a translation of Cantor’s 1883
Grundlagen . The translation required a preface which
both emphasized Cantor’s systematic connections to
Riemann, and pointed directly to the effects of such

Riemann-Cantor influence on critical aspects.of Labor

Committee theoretical work. Now, approx1mate1y five
years ago, Parpart, a philosophy professor who had
come up through advanced mathematical training,

undertook the assignment of writing such a preface

and completing a final editing of the translation of the
Grundlagen itself.

There were two determining, evolving sets of cir-
cumstances which shifted the emphasis and scope of
that preface from its originally projected objectives to
the character of the Parpart dissertation published
here. First, for reasons which are not in the slightest
exaggerated nor properly mysterious, the conception
of physical processes elaborated in the Labor Com-
mittees’ economic theories represent a significantly
more advanced epistemological conception than
presently prevails in theoretical physics as such. This

has obvious implications. Second, the development of -

the dissertation demanded an intensive comparison

of the epistemological content of LaRouche’s theor-"

etical work with that of leading epistemological
currents in the evolution of theoretical physics during
the 19th and eariy 20th centuries. This second

consideration was increased in importance and bias

as a result of the Labor Committees’ active and in-
creasing support for broadly based basic research
centered around controlled thermonuclear reactions,
Hence, the dissertation has acquired the form of a
contribution to theoretlcal physics in the tradltlon of
Riemann and Cantor

The Crucial issue

In the history of modern science, two basic,
mutually antagonistic approaches to defining a scien-
tific method predominate. On the one side, there are
severdl varieties of the so-called reductionist  ap-
proach, for which the classical materialism of Euler
and Lagrange or the empiricist and positivist currents
are leading examples. This approach is premised on
the attempt to fit material processes within analytical
schematadefinedbyaprioristicaesthetic presumptions
concerning space, time and scalar notions of magni-
tude — associated with aprioristic belief in self-evi-
dent discreteness. The axiomatic features of this first
approach impel the analyst to define the fundamental
qualities of nature in terms of elementary particles or
(at least) ostensibly elementary discrete phenomena.

On the opposite side, only universals are considered

primary or ontologically irreducible. That is, totalities
which represent true universals are not defined as
aggregations of particulars, but the particulars
subsumed by such universals are understood to be
elaborations of the universality as the corresponding
primary existence. The apparent difficulty tradi-
tionally encountered by this approach is the fact that if
totalities are measured in terms of homogeneous
linear extension — hence, bringing Euclidean aprior-
ism in through the cellar door — it is impossible to
define a universality in such a way that subsumed,
actually existing discrete phenomena have the deter-
mined quality of actual existence:~Since discrete
phenomena of some varieties stubbornly exist, the
simplistic or linear conception of a universality (or,
true universal manifold) must be rejected as in-
compatible with the physical evidence.

If this problem is situated within the empirical
domain of the history of successive development of

societies, the conceptual form of a satisfactory solu-

tion to the notion of universals can be made im-
mediately apparent, with results which conform to the
empirical evidence of modern economic develop-

‘ments. If the world economy is defined as an inter-

dependent, indivisible totality (in terms of effective
relationships), the uniquely acceptable characteristic
feature of that universality is of the form of expo-
nential functions in terms of S°/(C+V), for the
condition that S C, V are determined in the way
prescribed for this purpose in Dialectical Economics.
This method, which has been uniquely verified by the
crucial evidence of the 1958-1975 period, is also veri-
fied for not only the general case of a potentially multi-
linear social evolution, but also for the case of general
ecology (the evolution of the biosphere).

Translating the results into concise language, we
have a nested series of manifolds of generally suc-
cessively higher orders. In this representation, the
invariant feature of each manifold is a non-linear
characteristic of changing, but ordered values which
expresses both the self-development of the immediate
manifold (economy or ecology) as a whole, and also
the potential emergence of a successor manifold. The
conception to be attributed to negentropy as such an
invariant (as a world-line characterlstlc) is rigorously
defined in those same terms.

Although this is implicitly Karl Marx’s outlook in
both economics and in the distinction between his dia-
lectical method and that of Hegel, LaRouche’s
original contributipns have the double significance of
making that connection explicit and thereupon
building somewhat further. It was the fact that the
Riemann-Cantor approach to manifolds pointed to a
physics in agreement with such a world view which
prevented LaRouche from immediately discarding his
such approaches to economy and then allowed him to



appropriate theoretical apparatus for\glo'bal policy-
making in the period immediately ahead. Indeed, the
basis employed by LaRouche and his collaborators in
developing the IDB strategical approach to a new
world economic order is just that.

Consequently, it should also be understood that the
contents of the present issue have the following, inter-
related urgent political significances. In general, the
situating of the method used by the Labor Committees
in respect to the leading problems of contemporary
physics have the immediate benefit of making the

method itself more readily comprehensible to a broad

stratum of specialists. At the same time, the fact that
this approach provides a common language of policy-
making for the coordinated fostering of scientific
development and economic development is of the

utmost importance in minimizing the risk of detours -

into misallocation of resources. At the same time,
through the elaboration of this material in the form of
education programs among skilled and semi-skilled
workers, this same approach provides such workers
with a direct and efficient common language for
participating directly in formulating and judging
global development and related policies.

5

For the skilled and semi-skilled worker into whose

- hands this issue comes, we offer .the consoling

assurance that what he needs to understand concern-
ing this subject-matter is not inaccessible through
classes provided to an intelligent person of his
probable education background. The secret of the
whole matter involves the mastery of a few basic
conceptions, after which other essential rudiments
begin to fit quickly into place in comprehension. We
shall certainly not deprecate the incontestable value
of a broad and profound educational background in
any profession. Such specialized education and exper-
ience pertain to the professional side of physics and so
forth. What concerns us as politicians is not the
elaborate cognitive architecture of professional

physics, but only a handful of essential, fundamentat _

principles which ought to be the common basis for
collaboration between the skilled worker (as policy
maker) and the working scientist.

Lyndon H. LaRouche Jr.
Dec. 30, 1975



attack crucial unresolved problems of Marxian econ-
omics and method from such an informed standpoint.

The necessary connection between economics and
physics is efficiently understood by briefly consider-
ing the essential fallacy in Hegel’s work. Hegel, as in
the Phenomenology, understood that a compre-
hension of reality demanded the abandonment of
-simplistic notions of homogeneous continuity in favor
of the notion of a principle of self-development
specifically characteristic of universals. Hegel also
correctly understood the problem of formal deter-
mination, that particularities must be shown to be
necessary actualities elaborated by the process of
self-development of wholes — that the existence of the
particular has the analytical significance of mediation
of the process of self-development of the universal.
Hegel’s treatment of true infinity (actual infinity) and
merely potential infinity (bad infinity) in his Science
of Logic coheres with/this, and also has a direct con-
nection to Cantor’s later development of the notion of
the transfinite.

Hegel also recognized that the physical universe
must be of the order of a higher-order manifold (in the
sense that the flawed Einstein version of General
Relativity does not). However, Hegel balked at the
speculation that the ‘‘nested manifolds’’ of successive
social evolutions could be actually mediated through
the physical domain — since this would require that
the physical universe be not a single higher-order
manifold, but a system of nested manifolds, such that
human actions might ultimately be efficient means
for altering the laws of that universe. At exactly that
crisis-point of his conception, Hegel retained his dia-
lectical method by rejecting ‘‘materialism,” limiting
his concern to the self-development of the Logos’ (e.g.,
“idealism”). As in Hegel’s Philosophy of History , he
rejects the conception of labor which treats trans-
formation of the material conditions of existence as
primary, and defines labor in respect of the ad--
ministrative activities of ‘‘civil society.”” Thus, the

executive “‘labor” of the Prussian monarch expresses -

a primary form of labor for Hegel. o
 ‘'When Marx’s 1844-1845 writings are studied in that
light, and from the standpoint of LaRouche's elabora-
tion of economics and epistemology, a rigorous con-
ception of the specific accomplishments and limita-
tions of Marx’s discoveries immediately follows.

Marx - apparently (and to some extent actually)
" evades the issues of physical scientific knowledge by
the means underscored in the first and second of his
‘“Theses on Feuerbach,” freshly capitulated in the
elaboration of the single empirical premise of all
human knowledge in his ‘‘Feuerbach’’ section of The
German Ideology . 1t is sufficient, in Marx’s argument
to this effect, that human history demonstrates the
efficiency of man’s necessary ability to increase the

negentropy of existence, since the effectiveness of
man’s such achievements suffices also to demonstrate
that the laws of the physical universe must be in
conformity with the possibility of such successes.

Hence, Marx defines the negentropic transforma-
tion of materialized labor through scientific advances
as the single, invariant, world-line principle upon
which single rule all human scientific knowledge is
properly, uniquely premised. LaRouche’s essential
original accomplishment has been to identify that
connection and to employ that as the basis for the
elaboration of economic science and a few correlated
areas of endeavor.

The Ecological Case

The appropriateness of applying such an approach
to the fundamental questions of ecology can not be
competently resisted. The broad results are relatively
immediate and incontestable in fact.

Reductionist biology locates the evolution of the

. species in the isolated biological individual, a hotly

defended opinion in defiance of the relevant empirical
evidence. An array of species (to put the point in broad

‘terms) corresponds to a negentropic state of an entire

ecology. The effect of shifts in populations of included
varieties is to alter the negentropic state for better or

. worse. (The analogy to variations in specific com-

modities is slightly strained but not otherwise inap-
propriate.) An adverse result lowers the negentropic

‘state, with corresponding effects on the plenum of
- species; an enhanced negentropy mediates further

variations, which mediate further variations. Thus,
the universal, the entire biosphere or specific ecology,
mediates its own negentropy through the determina-
tion of the individual variety.

‘In economy, the determinant of negentropy is im-
mediately located in the single creative individual.
This individual is variously creative either in synthe-
sizing new conceptions whose realization increases
the negentropy of the economy as a whole, or “more

' passively”’ develops conceptions which enable him to

master the conceptual innovations created by others.
The material-cultural conditions of life determine the
kinds of creativity of this import available to the
society. In this way, realized inventions, by enhancing
the negentropy of general material-cultural existence,
foster the advancement of the creative powers of the
population, which is then a potential for new inven-
tions which are realized as further advances in the
material-cultural negentropy of the society as a
whole. .
Although these points have been developed here
only in summary pedagogical form, it should be clear -
enough that this systematical approach to the com-
bined issues of ecology and economy represents the



The Conc ept
of the

Transfinite

by Uwe Parpart

 Das eigentliche Studium der
- Menschheit ist der Mensch.

Goethe



- 1.“ The Unity of the All”

Since the publication in 1910 of Russell and
Whitehead’s Principia Mathematica, Georg Cantor’s
set theory has played a central role in virtually all
investigations into the foundations of mathematics.
However, the ‘‘logicist’’ Russell-Frege (1) approach
to the philosophy of mathematics, which attempts to
derive the entirety of mathematical propositions in all
the different branches of the field from a combination
of set theoretical and formal logical principles, would
have been completely alien to Cantor’s overall intent.
Rather than subcribing to the narrowness and
reductionism of the Russell-Frege program, Cantor
saw himself embarked upon the most broad-based
epistemological project, not at all, or at least not
principally, associated with set theory in the current
mathematical-technical use of that term, but con-
ceived of as an ambitious investigation into the con-
cept of the infinite in continuation of the earlier efforts
of Nicholas of Cusa, Giordano Bruno, Benedict
Spinoza, and Gottfried Wilhelm von Leibniz. This is
clear both from the direct evidence of Cantor’s
writings and from what we know about the intellectual
origins of his work. Appropriately, the sub-title of the
1883 Grundlagen, which represents the result of ten
years of intense struggle with the concept of the in-
finite, is ‘A Mathematical-Philosophical Study in the
Theory of the Infinite.”” And the preface of the special
1883 Teubner edition of the Grundlagen, originally
published as part five of a series of essays entitled *“On
Infinite Linear Point Manifolds” in the Mathematical
Annals, contains the caution that

this essay was written for philosophers who have
followed the development of mathematics into the
most recent period and for mathematicans who are
familiar with the most important older and newer
issues in philosophy. ‘ '

More directly, in an 1885 review of Gottlob Frege’s
The Foundations of Arithmetic (1884), Cantor ex-

plicitly criticizes Frege’s attempt to base the concept
of number upon the notion of the ‘‘extension of -
concept,”” which he regards as utterly imprecise, and
counterposes his own approach of first settling the
issue of determinate infinite numbers and then ap-
plying the insights thus gained into the number con-
cept to the derivation of the principal predicates of
‘number for both the finite and the infinite realm.

‘The study of the intellectual roots of Cantor’s

project reveals two principal types of-problems which

Cantor intended to address through his concept of
transfinite number. Onthe one hand, he was thoroughly
familiar with the principal lineg of research in

mathematical physics in the first 50 years of the 19th
century and, in particular, with the results attained by
Riemann both in his geometrical and his function-
theoretical works. Through his investigation of the
line continuum, Cantor set himself the task of further
elaborating Riemann’s concept of an n-dimensional
manifold. On the other hand, in the Grundlagen and
elsewhere, Cantor explicitly references the major
problems with Spinoza’s theory of the actual infinite
and claims that the formal properties of the trans-
finite ordinal numbers imply a possible solution.
According to the Grundlagen, the weakest and most
difficult point of Spinoza’s theory involves the relation-
ship of the finite to the infinite modes of substance: ““It
remains unclear why and under what circumstances
the finite is able to maintain itself vis-a-vis the in-
finite.”” The same problem had previously been
identified by Hegel; thus at the beginning of the
Spinoza-section of the Lectures on the History of
Philosophy, he writes

Spinoza died on February 21, 1677, in his 44th year of

consumption (tuberculosis), of which he had suffered

for some time — consonant with his system in which all

specificity and singularity is consumed by the one
- substance. :

It is through Cantor’s discovery of a succession of
definite transfinite numbers, his proof of the existence
of an internal differentiation of the infinite and of its
determinateness comparable to that of the finite
realm, that Spinoza’s problem is solved, and the
ability of the finite individual to maintain itself in face

‘of the consuming power of the infinite is explained.

For the successive ordering of the transfinite requires
the ‘“‘creative intervention’’ of the finite and discrete.
This also defines the deeper point of connection be-
tween Cantor's and Spinoza’s theorizing. The reading
of Spinoza’s Ethics convinces one very directly that
above all else this is a record or an account of the
principal features of the psychology of the creative
process. Spinoza gives us a direct insight, even if more
geometrico, into his own understanding of the process
of perfection of human knowledge. Similarly this is
the one theme to which Cantor consistently returns in
his published writings and letters,\especially in his
most productive 1878 through 1884 period. His concept
of a successive ordering of transfinite numbers most
beautifully expresses the unity of his insight into the
mental process necessary to solve the problems he
poses for himself in the theory of manifolds,and the
unique appropriateness of the results of his reflection
upon this process (i.e. the transfinite numbers) to the



solution of the mathematical problems at hand. A
comment on the process of concept formation im-
mediately following the first actual definition of the
sequence of transfinite ordinals demonstrates the
point:

Here we see a dialectical generation of concepts which
always leads farther, and yet free from all ar-
bitrariness remains in itself necessary and rigorous

— a precise formulation both of the way in which a
higher order transfinite ordinal follows upon a
previously defined number sequence, and at the same
time of the process in which a unique new concept is
determined through the way the sequence of
preceding concepts ‘‘has modified in a definite way
the substance of our mind.”

My own principal use, in the following, of Cantor’s
transfinite numbers will be in defining how Marx’s
theory of knowledge, which remained incomplete in
this respect, must be extended to an understanding of
the necessary structure of the physical universe as a

whole, i.e., as the basis for drawing the most general

hylozoic conclusions from Marx’s epistemology and
economics. That such an extension is necessary is
indicated negatively by the glaring inadequacy of
especially Engels’ studies in mathematical physics
(as, for example, in the Anti-Diihring and the
Dialectics of Nature), and otherwise by the demon-
strated inability of contemporary theoretical physics
to progress beyond the epistemologically pre-Marxian
standpoint of Einstein’s 1915 Theory of General Rela-
tivity, and of accomplishing its urgently necessary

unification with quantum mechanics into one coherent

physical theory of the micro- and the macrocosmos.

It is usually assumed today, (cf., e.g., the 1956
. supplementary notes to Wolfgang Pauli’s classic The
Theory of Relativity), that the epistemological situa-
tion produced by developments in quantum mechanics
especially since 1927 makes ‘‘a complete solution of
the open problems of physics through a return to the
classical field concepts impossible.” Emstem s hopes
for a ‘‘unified field theory,”’

this ambitious program of a theory which solves all
problems regarding the elementary particles of matter
with the help of classical fields which are everywhere
regular (free of singularities),

are seen not only as extremely difficult to attain, but
as unattainable and wrongheaded in principle. I will
show that, on the contrary, Einstein's attempt at
creating a unified field theory represents the ab-
solutely mdlspens:ble rigor in the approach to the solu-
tion of the problems of particle physics and that
Cantor’s Theory of the Transfinite allows us to formu-
late a non-linear conception of the continuum and of

the physical field which defines the necessary basis
for advancing beyond relativity without giving up
continuity.

The unresolved problem of Spmoza s Ethics — the
role of the individual — and the scandal of con-
temporary physics — the incoherent side-by-side of
relativity and quantum theory — both exemplify that
most fundamental type of - problem of human

knowledge analyzed by Immanuel Kant in the Critique
of Pure Reason under the rubric of ‘‘antinomies of

pure reason.”’” For theoretical physics the ‘‘second
antinomy’’ is the most relevant one.

Kant demonstrates first (thesis) that “Every
composite substance in the world is made up of simple
parts, and nothing anywhere exists save the simple
and what is composed of the simple’’ (  Discreteness,
elementary particle conception), and second (anti-
thesis), with the same degree of cogency, that ‘“No
composite thing in the world is made up of simple
parts and there nowhere exists in the world anything
simple’’ (continuity, classical field conception). The
antinomy is directly replicated in the field
wave-particle duality. It will be resolved through the
application of Cantor’s theory of transfinite numbers

 to continuous Riemannian manifolds, generating the

concept of a continuous nested sequence of such mani-
folds, characterized by a succession of transfinite

- numbers, and so that discrete particles are seen as

necessary for the transition from one manifold to the
next.

The solution derives from the following more

general epistemological considerations. When we are

confronted with one of the Kantian antinomies, the
issue is certainly not finding a solution within logic to a
logical paradox. Rather, precisely the kind of
challenge to our knowledge has been thrown up which
defies all attempts at logical resolution, and effects
not just the coherence of our way of looking at the
world, but of our practical intervention into it — hence
of our very existence. The antinomy, which merely .
openly draws the contradictory conclusions from
beliefs we know we cannot give up, is thoroughly in-

- fectious, and once it has gained access to the structure

of knowledge it leaves nothing unaffected and
threatens chaos and destruction wherever it appears.
Finally, after it has turned everything around us into
rubble, it directly attacks us, and our most cherished
belief that a rational, lawful universe — the only kind
knowable to us — must ultimately be penetrable by a
logically consistent and complete set of universal
laws. This is the most profound threat; for if we
cannot maintain logical comprehensibility, how can
we maintain lawfulness, and what is left standing
between us and chaos?

Modern indifferentism recoils from the threat and

has tried to evade the challenge. Thus, the hegemonic



“Kopenhagen interpretation’’ of quantum mechanics
speaks of wave-particle ‘‘complementarity,” as
though contradictory existences would ‘‘complement’’
each other! The price that has been paid is the virtual
destruction of all progress in theoretical physics. The

antinomies are real, and, as Hegel points out, Kant’s

main accomplishment was to recognize that they are

necessary: he adds that there exist not only the four -

Kantian antinomies, but a (potentially) infinite
number of them. Barring the self-destructive evasive-
ness of indifferentism, the necessary existence of such
a sequence of contradictions forces us to conceptualize
the uniquely appropriate transfinite quality of the
human mind and, coherently, of human fexistence and
the existence of the physical universe in its entirety,
for which the necessity of contradiction is not a mortal
threat, but a productive condition of its existence.
Such a quality was first successfully isolated
through the application of the results of the Feuer-
bach-Marx critique of Hegel's dialectical method to
the study of the capitalist economy and defines the

contents of the evolutionary social reproductive

process. At any given stage of human social evolution,

the process of the necessary appropriation of nature -

for man is governed by definite laws, production-tech-
nologies, and production-relations (social institutions)
— t.e., by an historically specific ‘‘internal logic.” On
therother hand, for each fixed mode of global produc-
- tion-technology, mere quantitative expansion in that
mode (expanded simple reproduction) will sooner or
later incur the problem of limited natural resources
for further development — the  sooner, the more
successful the expansion process in the given mode.
We reach the point where the society under consider-
ation must destroy and supersede the logic of its own
previous existence or else destroy itself in short order.
- But this only defines the matter negatively. In positive
terms, it does not suffice that the old mode of produc-
tion at a certain point be augmented and ultimately
~qualitatively changed through the introduction of new
technologies which define new types of resources for
continued human existence; rather, that such qualita-
tive changes, whose content must be that of forcing
non-linear' increases in social ‘“‘free energy’’ rates
' §7C+V (2), continually have to occur has to be re-
cognized as the ‘‘conditio~humana.”’” For human
society to gain self-conscious control over the process
of its own future development, the mere occurrente of
expanded reproduction proper (for example, as inci-
dental by-product of the capitalist accumulation
‘process) is utterly insufficient. Instead, thenecessity
of expanded reproduction has to become understood,

and a species quality equal to the demand of continual

technological innoyations an,d exhibited as the definite
quality of human individuals has to be determined.

_existence,” the matter can be put as follows:

The required transfinite quality is circumscribed by
the notion of human freedom and exhibited in the
determinate (governed by the requirement of negen-
tropy) activity of the creative individual. Here
creativity must signify not just the spontaneous, iso-

lated singular insight, which produces an accidental .

discovery, but is not conscious of the conditions of its
own capacity to do so. Rather, it is the deliberately
controlled process of positing new types of lawful
connection, based uniquely in the self-conscious in-

‘sight into one’s own mental processes.

The fundamental premise of Marxian epistemology
— that all human knowledge is based on human

~ existence — can now be utilized to extend our under-

standing of the necessary invariant characteristics of
the human evolutionary process beyond anthropology
and to adduce the most general invariant features of
the physical universe as a whole. Following Cantor’s
lead in the Grundlagen (paragraph eight), where the

simultaneous intrasubjective (or immanent) and

trans-subjective (pr transient) validity — i.e., validity
in the intellectual and the physical world — of

mathematical concepts is defended by reference to-

“the unity of the all, which includes our own

1. It is a necessary presupposition of the possibility
of science that one and only one set of laws governs the
physical universe in its entirety. In particular, ad hoc
constructs brought in to account for empirical data or
specialized parts of the whole not comprehended by
the original set of laws must be strictly ruled out — the
antithesis of pluralism. (3) I

2. Human existence, which, as the final product of
the process of natural history, is part of natural
existence, is governed by the necessity of expanded
reproduction or freedom. -

Consequently, there must be a unitary process deter-

N

mining human existence, as well as organic and -

inorganic nature, and the laws of this process, notably
also with respect to the inorganic, must be consistent
with the principal invarient of human existence, the
capacity for qualitative conceptual advances. '

Note the following corollaries to this conclusion:

1. While expanded reproduction is a lawful process,
1s successive moments are governed by successively
different sets of laws; otherwise we would have mere
expanded simple reproduction. Similarly, we must
admit successively different sets of laws for the evolu-
tionary process of universal substance, i.e., changing
laws of (inorganic) nature.

2. Despite changes in the ‘“‘internal logic,” suc-
cessive moments of the expanded social reproduction
process do not simply arbitrarily follow each other,
but in each case represent the next higher level in

- “free energy’’ contents and tendencies toward non-
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linear increases in ‘‘free energy’’ ratios. The physical
universe as a whole must exhibit the same lawful
ordering and overall negentropic quality.
3. The world (space-time) -manifold is not a simple
~continuum in the Kantian sense of infini;e divisibility.
At first sight, the postulate of the ‘“unity of the all”
appears to imply the opposite, for continuity is simply
its ontological equivalent: discreteness or, equiva-
lently, the existence of self-subsistent particles would

have to allow for different functional relationships

between different (separate) sets of particles, and
no reason for the imposition of one coherent set of laws

could be determined. This point, incidentally, was well -

understood by David Hume who, in the Inquiry Con-
cerning Human Understanding, is forced to admit that
in order to account for the empirically real oneness of

the world, a ‘‘pre-established harmony” may have to

be introduced.

But while unity implies continuity, this need not be
the kind of continuity or connectedness of the world-
manifold envisaged by Kant. The Kantian continuity
condition is equivalent to the assumption of the metric
homogeneity of the continuum, and Riemann has
demonstrated that a continuous manifold admits of

highly inhomogeneous metric relations, so that homo- .

geneity (divisibility based upon one pre-assigned law
of division) is shown to be an unwarranted a priorism.
The metric and exact kind of connectedness of the
world-manifold are empirical questions, to be deter-
mined within the conceptual framework of a geo-

metrical formalism, which takes neither space .

(continuous fields) nor discrete existences (particles)
in space as primary, but is adequate to the formuia-
tion of their process of interaction.

My argument that the world-manifold is a ‘‘non-
linear’’ continuum characterized by lawfully

changing internal laws (‘‘laws of nature’’) is based on

the premises of the necessity of expanded
reproduction for human existence and of the ‘““unity of
the all,” allowing the extension of what is necessary
for human existence to the existence of substance in
general. The necessity of expanded reproduction was
_discovered by Hegel and Marx and is the cornerstone
of Marxian epistemology. The ‘‘unity’’-premise was
first explicitly asserted some 200 years earlier and
brought with it the final destruction of the medieval-
Aristotelean world system. Its conscious application,
though based on theological considerations, marks the

beginning of the development of modern science at the

turn of the 16th tc the 17th century. Since the notion of
the ‘“‘one-ness’’ of substance is fundamental to my
entire subsequent argument, I will now briefly review

the first successful use of the unity-principle 1n .

Kepler’s astronomical theor:es

Historical Excursus: Kepler—the Unity of
the All is Founded on the Rationality
of God’s Will

Johannes Kepler was born in 1571 in the southwest
German province of Wiirttemberg; in 1589 he enrolled
as a theology student at Tiibingen University — at the
time the world center of Lutheran orthodoxy — and
simultaneously entered the “Tiibinger Stift,"”” the

- same religious institution which was later to produce

Hélderlin, Schelling, and Hegel. Kepler’s purpose at
that point was to become a minister, and the subse-
quent five years of study of philosophy and theology,
according to his own testimony, defined for him the
fundamental problems and convictions that became
the mainspring for his later work in astronomy and
physics. _
Hegel calls it the “‘protestant principle”’

to transpose the world of intellect into the realm of
one's own feelings and sensibilities (Gemiit) and, in
one’s own self-consciousness, to look at everything and
to know and to feel all that formerly was beyond (this
world).

This is the éctual, active side of the principle of the
‘“‘unity of the all,”” of which Renaissance philosophy
had had a mere formal understanding. Kepler defines
that unity by asserting the coincidence of the essential -
predicates of the minds of God and man: God endowed
man with a rational soul, and that is what is meant by
saying that He created man in His image. The notion
of rationality is then explicated by way of geometry:

ks

Geometry is one and eternal, a reflection out of the
mind of God. That mankind shares in it is one of the
reasons to call man an image of God.

This notion of unity, that God created the world in
accordance with knowable geometrical principles, is
the basis of Kepler's Mysterium Cosmographicum
(1597), reporting the discovery of close quantitative
relations between the orbits and distances of the six
planets known at the time and the five regular
Euclidean solids. However, Kepler’'s use of the unity
principle is not limited to the ultimately mistaken
‘““geometrical interpretation.” Its most profound
application comes in the Astronomia Nova (1609) and
is already indicated in the subtitle: ai’no?\o'yn'ros'
seu Physica Coelestis (New Astronomy-—based on
causal explanations or Celestial Physics).

Physics and astronomy had been strictly kept apart
in the medieval Aristotelean-Ptolemaic system, the
former advancing causal explanations of terrestrial
(sublunar sphere) phenomena, the latter providing
purely geometrical descriptio\ns of the motions of the

i



A

/

heavenly bodies, constituted of a condensed ‘‘quinta
essentia.”’ Ptolemy <(and similarly Copernicus)
regarded the terrestrial and heavenly spheres as
made of entirely different kinds of matter and abiding
by equally different sets of laws. Thus for Ptolemy

it is impermissible to consider our human conditions
equal to those of the immortal gods and to treat sacred
things from the standpoint of others which are entirely
dissimilar to them...Thus we must form our judgment
about celestial events not on the basis of occurrences
on earth, but rather on the basis of their own inner
essence and the immutable course of the heavenly
motions. Then all those motions will appear simple to -

" us and much simpler than those which occur in our own
realm.

Kepier’s concept of celestial physics (or mechanics)
utterly destroys such dualism. From the time of his
earliest astronomical studies when he was introduced
to and accepted the Copernican heliocentric system,
Kepler simultaneously entertained the. 1dea that the
sun was also to be seen as the seat of forces responsi-
ble for the motion of the planets. This was the crucial
hypothesis allowing Kepler to exploit the wealth of the
empirical observational material accumulated by his
predecessor as imperial mathematician to Rudolph II,
Tycho Brahe, and to establish the first two laws of
planetary motion, based principally on investigations
of the orbit of Mars. Tycho had left Kepler with a most
interesting problem: on one hand, Tycho, like Coper-
nicus, held on to the assumption of uniform circular
motion of the planets; on the other, the very accuracy
of Tycho’s observations allowed Kepler to determine
that in some crucial cases the position of the planet
‘Mars calculated in accordance with the uniform circu-
lar motion assumption deviated by up to eight minutes
from the actually observed position. At that point,
rather than searching for alternative purely kine-
matical solutions to the problem, Kepler introduced,
and with immediate success, his causal hypothesis
about physical moving forces emanating from the sun.
The specifics are not important; but the new force
hypothesis allowed him to discard two critical
features of the Ptolemy-Copernicus-Tycho theories:

1. that in order to deal with certain irregularities in
the orbits of the ‘‘upper’ planets (Mars, Jupiter,
Saturn), the center of the universe had to be located
not in the sun but in the center of the earth’s orblt a
certain distance away from the sun;

2. that while irregularities were permitted in the
orbits of the “upper” planets, the axiom of uniform
circular motion was to be rlgorously upheld for the
orbit of the earth.

Concerning the first, the force-hypothesis, of course,
demands that the center of the earth’s orbit is the real
sun, rather than some ‘‘mathematical” or ‘“mean’’

11

sun. Kepler had been greatly encouraged in this view
through his reading of William Gilbert’'s De Magnete
(1600), which defines the notion of a field of force
(orbis virtutis) and in particular establishes that no
mathematical point in a magnet, but the magnet as a
whole generates the attractive (repulsive) forces. (4)

Kepler saw Gilbert’s magnetic forces as analogousto.
the forces which he had postulated in his ‘‘gravitas’
theory, developed to explain the -interaction of
heavenly bodies. In 1607, he took the decisive step and
for the first time explained an empirically observable
and quantitatively well-understood phenomenon on
earth, the tidal fluctuations, by way of a mechanical
(gravitational) interaction of the earth with-a
heavenly body, the moon (5).The qualitative distinct-
ness of phenomena in the sublunar (terrestrial) and
the “‘aetherial” region had been eliminated and the
principal obstacle for the development of a theory of
universal gravitation was removed. _

Concerning the second, once the determination of
the planetary orbits by solar gravitational forces is
admitted, the orbit of the earth no longer enjoys any
exceptional status. With that crucial insight, Kepler
explicitly transforms his force-hypothesis into a ‘“‘rela-
tivity-thesis,”” which in short order leads to the
pronouncement of his planet laws. He argues as
follows: we observe the other planets from a moving
earth: therefore any errors concerning the earth’s
orbit will necessarily introduce errors into the calcula-
tions of the orbits of the other planets. However, a
symmetrical line of reasoning could be employed by
somebody residing on Mars. So let us establish the
orbit of the earth relative to an observation from the
standpoint of Mars positions of several sun-earth
distances. In this fashion, we will gain empirical data
for the determination of both orbits and will no longer
have to rely upon a priori assumptions about the geo-
metrical shape of the one arbitrarily singled-out orbit
of the earth. Thus, in Kepler's own words, “eight
minutes showed the way to a renovation of the whole
of astronomy’’ — provided their significance is under-
stood and interpreted from a standpoint of the
rigorous application of the epistemological unity
principle.

The Astronomia Nova defines Kepler’'s most ad-
vanced standpoint of a unitary universe governed by
mechanical cause-effect relationships —

Maistlin (Kepler's teacher) used to laugh at my at-
tempts to reduce everything to natural causes.
However, it is my pride and my consolation that I
succeeded in this.

Much like Descartes, who in his 1664 Principles of
Philosophy presents a generally identical ‘“Weltbild”’
(world picture), Kepler does not press on to consider
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the compatibility of human existence and freedom
with such a mechanistic world view. Instead, in the
Harmonices Mundi (Harmonies of the World), which
he finished a few days after the outbreak of the Thirty
Years War, he reverts to the geometrical interpreta-
tion of the unity principle of the early Mysterium
Cosmographicum. Once again the notion of God the
geometer comes into the foreground, leading
precisely to that view of the static perfection of God’s
mind which is subject to the Ficino paradox, (6) that
an omniscient God is necessarily impotent, if omni-
science is taken to imply the existence of a perfected
body of knowledge constructed in accordance with a
given set of laws; for the existence of a completed
totality of that kind would entirely eliminate God's
freedom to intervene into and change the future
course of events. - '

Kepler’'s failure is understandable. After he leaves
Prague and the imperial court in 1612, the conditions
of his material existence become increasingly un-
certain, and, with the beginning of the war in 1618, his
life is drawn into and repeatedly threatened by the
events of war and the devastation, destruction, and
diseases it brings along. The Harmonices Mundi en-
visage the derivation in natural science of a world
formula which can be applied to attain the moral
progress of man. Under the impression of the utter
disharmony of human existence, the order of knowing
has been reversed and the serenity of astronomical
and geometrical knowledge is put forth as the ideal for
the regulation of human affairs. Like a man who is
drowning, Kepler writes in 1629:

When the storm rages and the shipwreck of the state
threatens, we can do nothing more worthy than to sink
the anchor of our peacefu! studies into the ground of
eternity. '

A year later, in 1630, he died.

~L

It is significant and serves to emphasize the point
that fundamental conceptual advances first occur in
the field of metaphysics rather than physics, that the
first to come up with a conception of God which avoids

the Ficino paradox and points toward a conception of

the physical universe ¢coherent with human existence
was a contemporary of Kepler’s, the Silesian cobbler
and philosopher Jakob Béhme. Unlike the astrono-
mer, Bohme does not abhor strife and dissonance, but
sees in them the very principle of the life process. The
first being God created was Lucifer. God is the ‘‘self-
separating (-differentiating) unity of opposites,’’ and
the same goes for nature; for "

the entirety of nature together with all the forces that
exist in nature, in addition width, depth, height, the
heavens and the earth...(are) the bady of God.

Now, why is such a process of self-differentiation of
God-Nature through opposing qualities necessary?
Béhme's most important answer amounts to explain-
ing the necessary structure of the universe in terms of
conditions for its knowability:

No thing can without adversity come to know itself;
for if it has nothing, which opposes itself to it, then for
ever and ever it goes out of itself and does not return
back into itself. If, however, it does not return back into
itself as into that out of which originally it came, then it
knows nothing of its substance.

Herein also lies the answer to Ficino: The world was
not created all at once; rather creation is a continuous

- process of self-differentiation, and only through such a

process does God come to know himself. If om-
niscience is interpreted from the standpoint of a
process of perfection of knowledge, then it is no longer
antithetical to omnipotence but presupposes it. These
ideas will find a direct application to theoretical
physics.



[1 From Fourier to Cantor

Hegel appropriately defines the concept of self-
differentiating and self-developing substance as
follows:

The living substance, further, is the being which is
truly subject or, what is the same thing, is truly real
only insofar as it is the motion of the positing of itself or
the mediation with itself of the becoming-different of
itself.

But, much as in the different case of Marx, the
concept remains bare — ‘‘the whole concealed gnd
hidden within its simplicity’’ — and no application to
the physical universe in its entirety is attempted. My
procedure in the following will be to use the concept of
substance as negentropic process of self-differentia-
tion as a point of perspective and to organize the

. material of 19th century mathematics and physics
from the standpoint of successive approximations to
the concept. Conceptions which pass'the test can then
in turn be regarded as providing the ‘‘detailed ex-
panse of content’”” and the ‘“‘developed expression of
form’’ without which ‘“‘science has no general intel-
ligibility.” '
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Paralleling the separation in Chapter I of the
“‘unity’’- and the ““expanded reproduction’’-premise,
the subsequent investigation into the notion of infinite,
continuous substance, which should simultaneously be
regarded as an historical exposition of the origins
within mathematical physics of Cantor’s theory of the
transfinite, is divided into two parts: first, the notion
that all relations of substance including its measure-
relations are internal is set forth. This amounts to
developing the idea of ‘‘relative space” and
polemicizing against ‘‘absolute space’’ and the
associated more far-reaching homogeneity assump-
tion that all functions in nature are analytic
(““smooth’’). The result is the statement of the
classical field conception in its most general form of a
Riemannian manifold. However, it is seen that in the
usual interpretation of that concept it is insufficient to
accomodate the existence of discrete particles. The
second part, therefore, introduces Cantor’s transfinite
numbers to provide continuous Riemannian manifolds
with enough internal structure to make discrete
existence as determined by the continuous whole

| possible.

1. Newton vs. Descartes

The notion of space as the integral whole of the
process of nature, i.e., the notion of ‘‘relative space,”
was first developed by Descartes. In explicit opposi-
tion to the views of the Greek atomists, characterized
by the irreducible dualism of ““‘atoms’’ and ‘‘the void,”
Descartes denies the existence of both. There is no
duality of space and matter: extension is the essence
of material substance; matter and extension are
identical. Changes in substance signify matter in
motion, and the latter must be describable in purely
geometrical terms.

The implied conception of a purely geometrical
physics givés rise to Descartes’ most significant|
achievement, the development of analytical geo-'
metry. The space of analytical geometry is the con-
tinuum of the positions of moving bodies. By way of
contrast, the space of the older synthetic geometry is
simply the space between the individual rigid bodies
and figures which alone comprise the subject matter
of geometrical investigations. The space of Descartes’
analytical geometry is the first example of a con-
tinuous manifold, consciously conceived as such — the
three-dimensional manifold of all possible paths or
curves of particles in motion. Only the later 18th
century French Newtoniant managed to reduce it to

the concept of the rectilinear Cartesian co-ordinate
system, a fate from which it was not rescued until
Gauss and Riemann made the Cartesian manifold the
basis for their non-Euclidean geometries.

v While we cannot in all fairness saddle Newton with
the exaggerations of his interpreters, and while many
of his specific criticisms of detailed aspects of
Descartes’ physics were undoubtedly well taken,
there is at the same time no question that thejoverall
impact of his mechanics (and underlying meta-
physics) takes us back to pre-Cartesian positions. His
abandonment of Descartes’ Continuum Theory of
Material Substance and re-establishment of an atom- -
istic theory which regards absolutely hard, in-
compressible, indivisible particles as the ultimate
constituent elements of matter are at the heart of the
problem — a veritable Pandora’s box of metaphysical
horrors. The difficulties become immediately obvious
when we take a close look at Newton’s most important

‘accomplishment, his Theory of Universal Gravitation.

The bold idea of the same general attraction force
attaching indiscriminately to all physical bodies could
have significantly advanced, as a unifying force
defining the integrity of the physical process,
Descartes’ notion of space as the continuous manifg}d
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of physical events. Instead, pressed into the meta-
physical framework of atomism, it gave rise to the
abomination of ‘‘instantaneous action at a distance”
and firmly re-established ‘‘absolute space.”

In Newton’s theory there exists a fixed number of
particles (point masses) in the universe and there
inheres in each, for reasons not otherwise explained,
an attractive force, proportional to its mass, which
acts instantaneously and in inverse proportion to the
square of the distance upon every other particle in
existence. This is described by the differential equa-
tions for the n-body problem

. n_’ X, —X. .
X, =Yy m, -'—k;—-a-—' (i=1,..n)
. k =1 i

(D ik
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(similarly for the y and z components).

The fact that the time t does not explicitly occur in
these equations signifies the instantaneity of gravi-
tational action. To the extent that gravitational inter-
action among particles defines a set of purely external
relations for each gravitating mass which in no way
modifies their internal being, space, of course, can be
no more than the “‘uninvolved stage’’ for physical
events, the reference body or unchanging yardstick in
the background, the “‘innocent’’ infinite-size container
of matter in motion — space in the ‘‘absolute’’ sense.

Newton himself, while holding fast to his atomist
hypothesis (one place where his ‘hypothesis non
fingo’’ might have been productive), certainly was not
satisfied with its consequences. Thus he writes in a
letter-to Bentley:

That gravity should be innate, inherent, and
essential to matter, so that one body may act upon
another at a distance through a vacuum, without the
mediation of anything else, by and through which their
action and force may be conveyed from one to another,
is to me so great an absurdity, that I believe no man
who has in philosophical matters a competent faculty
of thinking can ever fall into it.

Nor did he have the complete faith in the overall
coherence and consistency of his system displayed by
Lagrange in Mécanique Analytique, and by Laplace
in Mécanique Céleste . The problem was that — princi-
pally for psychological reasons deriving from his
personal and social circumstances that cannot be
dealt with here — whenever he was confronted with a
choice between atomism and continuum theories the
metaphysical weight of the former proved superior.
His relationship to the differential calculus which he
himself developed is a case in point. While much of the
research and calculations that went into the Principia
were based upon and made use of the calculus, there is
no trace of it in the final version of the Principia itself.

Lagrange, in full recognition of the continuum-theor-

etical implications of the calculus of infinitesimals,
explicitly drew the consequences for mathematical
theory. In his Théorie des Functions Analytiques of
1797, he purged the calculus and specifically the
crucial concept of the limit altogether from the theory
of functions and replaced it by a purely formal
““calculus of derivations.”” Only functions which can be
defined by a power series

f(x)=ap +a;x+a,x2 +...

are taken into consideration, and the differential quo-
tient f'(x) (Lagrange even avoids the use of those
words and calls it the ‘““derived function’’) is then
defined in purely formal fashion by a second power
series

ff(x)=a; + Zagx.+ 3a3x2 +...

Ironically, if these series are to be applied in physics,
we have to consider questions of their convergence
which is possible only through utilization of the limit
concept.

These considerations aside, there exists an essential
feature of Newton’s mechanics which begins to under-
mine the notion of “absolute’ space which otherwise
appears to be such an unshakable part of it. As the law
of inertia makes no principle distinction between a
body at rest and in uniform, rectilinear motion, the
absolute significance of a specific point in space,
which had been a cornerst{)ne of Aristotelean physics
(everything has its ‘‘natural’’ resting place), disap-
pears. Formally, this finds its expression in the in-
variance of the system of equations(I)with respect to
the group of so-called Galilei-Newton transformations

' __ — ) L.
Xi =X tay, yi=y;+tap, ;=2 ta,
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Yi=aX; +ba¥i + ¢,z
{In
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X;=X; +B1t, yi=y: +8at, z;=27; + 85t

of the (x,y,z,t) co-ordinate system into the
(x)y:z't) system. What we are left with is a concept
of space whose ‘‘absoluteness’’ has been considerably
diminished. Not only is no one point or region of space
from the standpoint of Newtonian mechanics pre-
ferred to any other, but there does not even exist the
possibility of determining whether or not space, which
is presumably stationary, (7) may not in fact be in a

N



state of uniform, rectilinear motion. Space, in the’,

sense of inertial framework, has lost a great deal of its
assumed independent reality, and for all its “‘ab-
soluteness’’ even the properties of Newton’s space can
only be investigated by way of an investigation of
physical reality in its entirety. Curiously enough

7 Gauss and Fourier:
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Newton himself can be quoted to that effect. In the
introduction to the Principia he writes:

Therefore geometry is founded in mechanical practice,
and is nothing but that part of universal mechanics
which accurately proposes and demonstrates the art of
measuring.

The Forerunners

of Classical Field Theory

By the end of the 18th century the Newtonian system
increasingly began to resemble the system of
Ptolemaic astronomy at the end of the 16th: not
disproved, but more and more cluttered with ad hoc

“constructions. Ironically, this was primarily the result
of the convincing simplicity and success of the core of
the system, the mechanics. The difficulties arose
when, in the 1§th century, its principles and assump-
tions were rapidly extended to the entire realm of non-
mechanical physical phenomena such as light, heat,
electricity and magnetism. In each case and in con-
formity with the metaphysical basis of the mechanics,
fluids of corpuscles were invented to account for the
observed effects: Lavoisier’s ‘““caloric’ (heat fluid),
Benjamin Franklin’s fluids of positive and negative
electricity, magnetic north pole and south pole fluids,
etc. (Compare today’s nonsense: quantum-field

theory, ‘‘gravitons,” etc.) This wholly uncritical ex- '

tension of Newtonian mechanics on the part of
experimental physicists to a multiplicity of non-mech-
anical phenomena, of course, did little to advance
physical knowledge, and soon the entire structure
began to crumble under its own weight.

On the positive side, it brought about a thorough re-
examination of the ontological and epistemological
basis of the theory. Kant’s antinomies, discreteness
vs. continuity in particular, have been discussed
above. Beyond that, Kant, occasioned by the consider-
ation of certain cosmological paradoxes of a more
limited significance than those presented in the
Critiqué, began to develop in the Metaphysische

Anfangsgriinde der Naturwissenschaft the outlines of
" a continuum theory of material substance which, via
Schelling’s “Naturphilosophie,”’ became the basis for
all 19th century field-theoretical conceptions.

The Newtonian universe encounters the following
difficulties:

1. Given the assumed spatial and temporal infinity of
the universe, the amount of matter in the universe
must also be infinite. Otherwise, through the effects of

- radiation and aberration from their course, the finite

number of stars would long since have been dispersed
into infinite space and the world as we know it could
not exist.

2. If the amount of matter in the universe is infinite,
then either (a) the average density of matter is every-
where the same if we compare large enough regions;
or (b) there exists a kind of center of the universe
where the density of matter is maximal and dimin-
ishes with growing distance from the center. Neither
configuration is possible: (a) implies that from any
given direction in space an infinite gravitational force
must act upon a given body; (b) would lead to the
gravitational collapse of all matter into the center
which exerts an infinite strength attraction.

2a is closely related to the so-called Olbers paradox
(named after the 18th century German astronomer

'with whom Gauss carried on an extended

correspondence). Olbers had posed the question of
why the night sky was dark, a phenomenon that
cannot be explained on Newton’s assumptions, since
in every direction from the earth there exists an in-
finite number of stars, and even though the intensity of
light decreases with distance, the smallest finite
amount added up infinitely often must build up to an
infinite intensity.

The cosmological difficulties of Newton’s theory
have a direct bearing upon problems of the structure
of matter “‘in the small.”’ If we interpret the result of
this survey of possible cosmological configurations.
from the standpoint of the integrity of a ‘‘viable”
configuration of universal matter (‘‘viable’” in the
sense of being a possible vehicle for observed physical
processes), and given that no stable ‘‘viable’” con-
figuration exists — only dispersion or collapse — what
then of the integrity of ordinary physical objects?

Kant correctly observes that the atomistic theory
has great difficulties in accounting for the cohesion of
material objects and for their most basic quality of
exhibiting varying degrees of resistance to penetra-
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tion by other objects. Why do the atoms which make
up this table not just diffuse into the surrounding
space; and why is it easier for me to push my fist
through air than through a brick wall? There is
nothing in the conception of an atom per se that could
explain these facts. Certainly gravitational forces on
the microscopic level would be much too small to
account for the integrity and relative impenetrability
of-most ‘‘things.”’ |

Newton’'s answer to the problem dppears to be

- contained in the following passage from the Opticks:

It seems to me, further, that these Particles have not
only a Vis inertiae, accompanied with such passive
Laws of Motion as naturally result from that Force, but
also that they are moved by certain active Principles,
such as is that of Gravity, and that which causes
Fermentation, and the Cohesion of Bodies.

I had rather infer from their Cohesion, that their
Particles attract one another by some Force, which in
immediate Contact is exceeding strong, at small
distances performs the chemical Operations above-
mentioned, and reaches not far from the Particles with
any sensible Effect.

While these statements might fit right in with
modern electron theory, they are hardly satisfactory
from a rigorous mechanistic standpoint. A new force
(or forces), inherent in the ‘‘inscrutable’’ atom, is
introduced in an essentially ad hoc fashion in order to
account for phenomena the theory is otherwise in-
capable of handling. Worse yet, given that atomic
masses are not proportional to atomic volumes, dif-
ferent intensities of microscopic attractive force
cannot be defined as quantities of the same force vary-
ing with the size of the atoms, and hence we need.not
just one Force of Cohesion, but a great many quali-
tatively different ones in order to explain observed

differences in degrees of penetrability. :
Kant overturns this entire hodgepodge and instead

takes the resistance force of matter as primary, ex-
plaining it as the equilibrium state of two fundamental
forces — attractive and repulsive — which are polar
opposites of each other. Matter is thus conceived of as
the filling — in continuous fashion — of space by force,
which force-“field,”” in turn, defines the medium for
the propagation of physical effects. These are the
basic principles of classical field theory. Beyond Kant,
they were elaborated in much greater detail in the
writings of Schelling who particularly stressed the
idea of regarding different physical phenomena (such
as light, heat, electricity, etc.) as manifestations of
the same underlying fundamental forces or, alterna-
tively, as different states of the one basic, continuous
force field. (It was an avid student of Schelling’s
“Naturphilosophie,”” Hans Christian Oersted, who in
1820 discovered electromagnetism, the unity of
electrical and magnetic phenomena.)

-

Gauss: Intrinsic Geometry

‘Hermann Weyl has pointed out that if Descartes’
theory of motion, in which a fluidum which fills space
continuously acts as the carrier of motion, is followed
through consistently, a field theory results, in which
the behavior of material substance is described by the
differential equations of the hydrodynamics of incom-
pressible non-viscous liquids. Kant’s and Schelling'’s
concepts of substance are field-theoretical in a more
immediate sense. In all three cases the field concepts,
of course, carry with them the implied notions of
space as the manifold of physical events, and there-
fore of “‘relative’’ space. This is most explicit in the
case of Kant and his concept of the ‘“manifold of ap-
pearance’’ -— except that he relativizes space with
respect to the knowing subject.

(If he had taken the unorganized — not yet brought
under a concept — sense manifold, derived from the

-manifold of things in themselves, in the sense of

projective geometry, i.e., things ‘“‘originally’’ bearing
only qualitative relations to each other which we
‘““later on’’ quantify, then the application of the a

priori representation of space to the sense manifold
would amount to the imposition of specific metric

relations, and Kant would have anticipated, at least in

general terms, the Cayley-Klein conception of,
projective geometry.)

However, in all three cases as well, the authors
either explicitly or implicitly hold on to the Euclidean
structure of the manifold, and thus more than just a
tinge of “‘absolute’” space is thereby retained. |

(The extent to which a Euclidean structure permits
one to get away from the notion of ‘‘absolute space’’ is
the subject of the invariance theory of the Euclidean
group, i.e., the group of congruent transformations of
the (x,y,z ) — coordinate system.)

In fact, acceptance of any one (not just the
Euclidean) geometrical structure of the manifold, to
the extent that it is not determined by the internal
relations of the manifold, but imposed upon it “from
the outside,”” is a form of ‘““‘absolutism.” To see its
incompatibility with a rigorous relativist point of
view, we merely have to note that one critical feature
of that view is that it does not accept the distinction
between internal and external relations of bodies.
However, if a specific geometrical structure is im-
posed from the outside, then the spatial or external
relations of bodies are — at least in part — determined
from the outside and, by the continuity of external and
internal relations, must affect the inner nature of the
bodies in question. Through the acceptance of a fixed
geometry, the relativist view has turned into its op-
posite. ' -

Schelling appears to have been aware of the

!



problem and tried to deal with it by incorporating it as
a positive feature of his theory. Thus in his “Erster
Entwurf der Naturphilosophie”
““there ought to be discernible in experience some-
thing which, without being in space, would be the
principle of all spatiality.”

That such conclusions should be drawn simply 1nd1-
cates how firmly entrenched the notion of the
“Euclideaness’’ as the one and necessary character,
of space was at the time.

What was at issue was not simply or solely a meta-

physical dogma. This becomes obvious when we pose.
the problem of measurement in the manifold. To carry

the conception of relative space through to its conclu-
sion and purge it of every tinge of “‘absolutism,” a
method of measurement had to be discovered which
did not have to rely upon a fixed reference body, given
once and fer all, and brought to the mani-
fold “from the outside.”” To have developed such a
method was the principal achievement of Karl Fried-
rich Gauss, who was the first to study the *‘intrinsic
geometry’”’ of arbitrary surfaces (or manifolds), i.e.,
the intrinsic properties of surfaces independent of the
manner in which they are embedded in surrounding
space. With Gauss’ method the conceptual basis for a
radical relativism thus came into existence. As a
consequence, the remaining vestiges of ‘“‘absolutism,”’
“Euclideaness’’ and the related, but more funda-
mental assumption of the homogeneity of physical

he concludes that
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space were swept aside in short order.

(To further put into perspective the broad epistemo-
logical significance of Gauss’ discoveries — in his
possession since the earliest years of the 19th century,
but not published in formal detail until the appearance
in 1827 of the Disquisitiones Circa Superficies Curvas
— it will be useful to compare this exposition of his
ideas with the remarks on the concept of ‘‘historical
specificity,”” a key concept of Marxian anthropology,
in Lyn Marcus, Dialectical Economics, Chapter 4, p.
107 ff.)

Gauss’ method of ‘‘geometria intrinsica’’ is the
follt)wing: ““Arbitrary surfaces,” i.e., surfaces other
than the ones dealt with in elementary geometry —
planes, spheres, curves, etc. — were studied before
Gauss, with the first important results due to Euler

' (1760) and Meusnier (1776 — a general in the French

revolutionary army who died in 1793 of wounds in
battle). Neither of them; however, looked at surfaces
directly; rather, they considered them as two-dimen-
sional objects embedded in three-dimensional
Euclidean space, defined analytically with respect to
that space by a function f(x,y)=z (for example:
x2 + y2 = z,a paraboloid). Then, since they were in
possession of a reasonably well-developed theory of
curves in the plane, they proceeded to investigate

surfaces by looking at the curves generated by inter-

secting the surfaces with planes at various different
angles.

Euler’s definition of curvature
(the normal npis a unit vector perpendicular to the
direction of the tangent plane at pomt p.) '
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The curvature K of a surface F at a point p can then
be defined as follows:

Let n, be the normal to F at p and let N be a plane
that cuts F and contains n, The intersection of N and
F is a curve Cy which at p has a curvature Ky. This
would seem to be the definition we are looking for, if it
were not for the fact that it depends on the choice of N.
A plane N, containing n, but cutting F at a different

angle than N will in general define a curve Cy. such
that Ky #Ky,

Euler rescued thlS otherwise snmple and compact
idea of defining a surface curvature by proving a
theorem to the effect that:

1. If the Ky, are not all equal, then there exists
exactly one dlrectlon of the cutting plane for which the
curvature of F at p has a minimum value Ky, =K, and

one for which it has a maximum value Ky =K, .These
two directions are mutually perpendicular.

2. If N makes an angle () with N, (for which the
curvature equals K;), then

Ky= K_1 cos?¢ + K, sin? ¢-

To the extent that the theorem establishes a definite
analytical relationship between the curvature in
different directions, directional dependence, of
course, ceases to be a problem. -

Euler’s, concept of curvature has been presented at
some length to make two related points: First re-
emphasizing an earlier comment, the derivation and
application of the concept depends entirely on the
embedding of the surface in Euclidean three-space. To
verify this explicitly, the reader should consult the
standard calculus proof of Euler’s theorem. Second, a
point on concept formation. Euler’s definition im-
ports into the study of surfaces a concept developed
for the study of curves in a plane and thus reduces
surface-curvature to curve-curvature, But-by looking
at surfaces from the standpoint of so many curves, a
most important intrinsic property of surfaces gets
totally ignored: by bending (without stretching),
certain surfaces can be transformed into a given
surface, others can not. For example, a plane piece of
paper can be rolled up into a cylinder or a cone (paper
hat) but cannot be made to fit onto a spherical object
as anyone who ever tried to wrap a ball can readily
attest. Any curve, on the other hand, can be bent so as
to fit any other curve; there are no interesting
‘“‘deformation invariants’’ for curves, whereas in the
case of surfaces the study of such ihvariants is what
(after Gauss) the theory is all about. Gauss himself
describes the matter as follows:

When a surface is regarded, not as the boundary of a
- solid, but as a flexible, though not extensible solid, one
dimension of which is supposed to vanish, then the
properties of the surface depend in part upon the form
to which we can suppose it reduced, and are in part
absolute and remain invariable, whatever may be the
form into which the surface is bent. To these latter
properties, the study of which opens to geometry a new
and fertile field, belong the measures of curvature and
the integral curvature, in the sense which we have
given to these expressions.

The sense Gauss gives to the notion of curvature is
independent of the theory of curves on surfaces. Ac-
cording to his own abstract of the Disquisitiones,
Gauss arrived at his definition of surface curvature by

- utilizing a “‘procedure which is contantly employed in

astronomy, where all directions are referred to a
fictitious celestial sphere of infinite radius.”’ (8)

Let p be a point on a surface F, and S a segment of
F containing p. Now erect a normal at each point of S
and transfer the initial point of each - normal to one
point. Then the normals form a solid angle. Next
construct a unit sphere with the vortex of the solid
angle as its center. Call the segment of the surface of
the sphere which intersects the solid angle n(S). Then
the Gaussian measure of the curvature of F at D is

. . . . S
K(p) = Lim area n(S)
S+p area S

, [ Lim. the limit of — as S shrinks to p ]
Sp

If F is a plane, we can see immediately that K(p)=0
(for all p); for a sphere of radius r, a simple computa-
tion yields K(p) = 1/r2 (for all p), etc. What estab-
lishes the significance of this measure of curvature —
which can be proved to be equal to the product of the
extreme curvatures K; and K, above — is Gauss’
fundamental discovery that it is a deformation in-
variant and is completely determined by the inner
measure-relations of the surface. This cannot be seen
on the basis of the definition we have provided, which
obviously relies upon the embedding of the surface in
three-space and actually is not invariant under iso-
metries. However, this closely follows Gauss’ own
procedure, who in his treatise gives the definition put
forward above and only demonstrates the invariance
of his measure of curvature after developing the
analytical tools for carrying out measurements on
surfaces without reference to surrounding space — a
problem, by the way, which he had to confront in
actual practice when in 1816 he was commissioned to
make a geodetical survey of the Kingdom of Hanover.
Gauss’ method is as follows: Instead of referring to
a given point on a surface by means of its x,y,z,
coordinates in Euclidean three-space, two para-
meters, u and v, are introduced on the surface itself,



which determine a point in a manner familiar from
the assignment — for navigational purposes, etc. — of
latitudes and longitudes to points on the surface of the
earth. In this way a coordinate net is thrown over the
- surface comparable to the net of Cartesian coordin-
ates in the plane — except that the curves u = constant
and v= constant will no longer, in general, be straight
lines intersecting each other at right angles. The
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problenr is that under these circumstances, i.e., given
curvilinear rather than rectangular coordinates, we
can no longer use the Pythagorean Theorem for
distance measurements. The difficultyis overcome by
assuming the ‘‘Euclideaness of the surface in the
small’”’ or, equivalently, the applicability of
Pythagoras’ Theorem for ‘‘infinitesimal distances.”’

" THE THEOREM OF PYTHAGORAS -

Given rectangular coordinates, the
distance between two points can be

determined by using the Pythagorean
Theorem.

Given curvilinear coordinates, the

Pythagorean Theorem cannot be used
as such. In the case of two points
which are infinitely close, equation (V)

p=(2,3)

- is used to determine the distance
between the two.(lf u=x and v=vy, then
E=1, G=1, and F=0 and equation (Vi) \
reduces to a Pythagorean formulation.)
v=4
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Assume that for a parametef t a curve C. on the
surface F is given by the equation u=u(t), v=v(t).

We know that in Euclidean (x,y,z) -space the dif-"

ferential of the arc length s of a curve parametrized
by t is given by

o (&)~ () () - (8)

To make this formula applicable to our curvec on F,
we-consider ¢ as a curve in (x,y,z,)-space by ex-
pressing x, y, and z as functionsof y and v.

:‘

x=x(u,v), y=y(uv), z=

z(u, v).
Then ¢ is represented by

n <X v ),

y=vy(u [t],v[t])..
Forming the differentials of (II)

dx _ dx du
dt du dt

4+ 0x dv

(1) av dt , ...

and substltutmg them in (I) we obtain a quadratlc
differential form

ds\* _[ox du 2+2axdu_axdv
dt du dt “du dt ov dt
. v dat
Introducing the so-called Gaussian coefficients
. a'x ay 0z
E= (au) +(au) (au) ,

_0x ax‘
du av

{3

Qy oy , 0z 3z
ou 9v au ov

()6

equation (IV),the expression for the infinitesimal ““line

element’’ on the surface becomes

ds “du du dv dv \?
or simply ~

(VD ds? = E (du)? + 2F (dudv) + G (dv)?

For a given surface, E,F, and G! will in general

vary from point to point, in a sense defining in each
case the extent to which the metric in the neigh-
borhood of a pomt deviates from the Euclldean
metric.

The Gaussian curvature K at a point p can “he
computed solely from the coefficients E,F,and G and
their first and second order differential quotients on
the basis of a rather complicated formula which is
included here without explanation and simply for
reference purposes:

: | ,
4 (EG — Fz.)K: E(_a_gég ___26_)_F . 9G +‘(gc

av 9dv du av

)

u
/
. p[2E 3G _3E 3G _,3E 3F
du dv 90V du “av av
|, ,0F 3F L 0F 3G
(VI o ou adv du du

| oE 9G
¥ G(au "du

_ 9 9E aF 3k \?
Ju av aou

. 3%E 0°F 932G
— 2(EG — F? —
( )(av2 2 auav+ du?

From (VII) it is clear that, if E.F, and G are constant,
the constancy of the Gaussian coef-

then K=0, i.e.,
ficients defines a sufficient.condition for the Euclidean
character of a surface.

Since, furthermore, the metric coefficients, which
only depend upon the surface and not its embedding in
three-space, uniquely determine K,
possible to ascertain whether a surface is curved or

not by measurements taken on the surface itself. That .

this is indeed the case is shown by the following
example:

Let S be the surface of a sphere of radius R and.

let ¢ be a circleon S with center p. Now, using a
measuring chain, we can measure the lengths of the
radii from p to ¢ and the length of the circumference
of ¢ : let their lengths be r and s respectively. If their
measurements had been taken on a plane, then we
could express s as a function of r by the formula

s-(r)=

2nr;

instead, however, we find that

it should be

)
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Using the same radius r, s(r) is smaller when drawn on a sphere than when

itis drawn on a plane.

s (r) = 27R sin(r/R).

Without making use of the third dimension we have,

demonstrated that S is not a plane.

More generally, the coefficients of (VI) which from

now on we shall call the metrical groundform and

write as

n
(VIID 442 = i,@ g, dudu,

(u, =uandu, =v, g = i)

determine not only the Gaussian curvature K of the
surface, but the intrinsic surface geometry in its
entirety. In fact, through his discovery of the possi-
bility of different intrinsically determined metrics for
surfaces and his recognition of the fundamental
significance of the coefficients of the metrical ground-
form for the determination of all other geometric
magnitudes such as the length of curves and the size of
angles and areas, after Gauss’ Disquisitiones we are
for the first time able to speak of a geometry rather
than of Geometry. meaning the geometry of Euclid.
Gauss actually indicates how a geometry, and trigon-
ometry in particular, of arbitrary surfaces can be
developed in exact analogy to plane geometry, if,
instead of straight lines, we base it on the concept of
the geodesic or shortest line (in terms of the metrical
groundform) between two points of the surface. Then
the *‘distance hetween two points’’ of plane geometry

is replaced by their ‘‘geodetic distance,” i.e., the
length of the geodesic between them. All the other
invariant geometric properties of a surface can be
derived from this notion.

Parenthetically: Non-Euclidean Geometry

With the major elements of Gauss’ theory of curved
surfaces now before us, it is clear that his conceptions
define a much more broad-based and radical depar-
ture from Euclidean notions than the so-called non-
Euclidean geometries of Bolyai and Lobachevsky of
1832. In the Gaussian framework, the latter simply
define the special case of a space of constant, negative
curvature. That Gauss was well aware of the three-
dimensional implications of his work on surfaces is
apparent both from his correspondence and from his
publications. As early as 1817, as evidenced by a letter
to the astronomer Olbers, he had reached the con-
clusion that there is no inconsistency in the assump-
tion of an ‘“‘anti-Euclidean’’ geometry, and that
therefore the question of the true geometry of space
was an empirical one that had to be decided on the
basis of experiments. The (negative) results of one
such experiment, actually carried out by Gauss, are
reported at the end of the Disquisitiones : the sum of
the angles of the triangle formed by the mountain tops
of Hoher Hagen, Brocken, and Inselsberg — the
greatest side of which is more than 100 kilometers long
— deviates from 180 degrees by an amount that lies
within the limits of error of the measurement.
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To make such measurements possible at all, Gauss
constructed what he called a “‘heliotrop,”” an instru-
ment which concentrates reflected sun rays virtually
into a point, thus creating a highly visible target of
minimal extension for long distance measurement.
The measurement of large scale light ray triangles
(rather than measurements on the surface) obviously
would not have made any sense unless Gauss had
pursued the idea that the three-dimensional surface,
into which the two-dimensional surface of the earth is
embedded, might be of the same complexity as that
surface, or more generally, that the intrinsic geo-
metry of three-space might be constructible along the
same lines as that of two-space, and that therefore
actual three-space might exhibit the same character-
istics of metric inhomogeneity, changing (not merely
non-zero) curvature, etc., as the actual two-
dimensional surfaces contained in it.

In any case, there can be no doubt that a proper °

understanding of both the development and the signifi-
cance (for physics, etc.) of non-Euclidean geometry
can only be attained from the standpoint of a
generalization to higher dimensions — first developed
explicitly in Riemann’s 1854 Uber die Hypothesen,
welche der Geometrie zu Grunde liegen — of Gauss’
theory of curved surfaces, and not from the abstract
standpoint of questions concerning the provability or
independence of Euclid’s ‘‘fifth (parallel) postulate,’’
which, as Weyl correctly points out, ‘“‘seems to us
nowadays to be a somewhat accidental point of
departure.”

Gauss’ point of departure was his astronomical
investigations and the cosmological and epistemo-
logical concerns that grew out of them. He un-
doubtedly was familiar with the kind of cosmological
problem typified by the Olbers paradox of which we
gave a brief exposition above. Otherwise his theor-
etical grounding was in Leibniz’ relativity doctrine of
space, empirically reinforced by his growing involve-
ment in the development of the mathematical theor-
etical framework for a unified and comprehensive
understanding of the phenomena of electricity and
magnetism — efforts which between 1838 and 1840 led
to the publication of two fundamental treatises in this

field: 1. General Theory of Earth Magnetism; and 2. |

General Theorems Relating to Attractive and Repul-
sive Forces Acting in an Inverse Proportion to the
Square of the Distance.

Perhaps the, in brief, most striking example of his
continuum approach to problems of physics and
astronomy can be gleaned from the title of his 1818
treatise on secular disturbances of the orbits of
planets, developed in conjunction with the computa-
tion of the orbit of the asteroid Pallas: |

Determinatio attractionis quam in punctum quodvis

positionis datae exerceret planeta, si eius massa per
totam orbitam ratione temporis, quo singulae partes
describuntur, uniformiter esset dispartita. |
(Determination of the attraction which a planet would
exercise upon an arbitrary point of a given position, if

_its mass were uniformly distributed over the entire |

orbit in proportion to the time in which the individual
parts described run through the orbit. Assume that the
mass of a planet be distributed along its orbit in in-
verse proportion to the orbital speed at a given point.
Then compute the force of attraction of this ring upon
a test body.)

This great amout of emphasis has been put on the
epistemological and empirical science context of
Gauss’ work because in immediate continuation and
amplification of the thrust of the relativity doctrine of
space discussed above, his ‘‘anti-Euclidean’’ and
differential geometry represent a major step towards
the complete transformation of geometry from the
study of fixed, abstract homogeneous space into the
study of the changing, intrinsically determined con-
figurations of the internal relations of the evolutionary
process of substance. It is the germ of such a con-
ception of space that Riemann discerns in Gauss’
work and elaborates in his own writings.

The extent to which Gauss fails to free himself
completely from the notion of absolute space finds its
expression in the fact that in his explication of the
concept of a metrically inhomogeneous surface the
Euclidean metric remains essential — even though

‘only ‘“‘in the small.” I shall demonstrate that in the

case of Riemann this is not so, and that therefore the
customary view that Riemann’s geometry is suffi-

-ciently characterized by describing it as a generaliza-

tion to n dimensions (arbitrary n) of Gauss’ theory of
curved surfaces is incorrect.

Fourier: ‘‘Arbitrary’’ Functions

Before entering into the description of some key ele-
ments of Fourier analysis — the analogue in the
theory of functions of Gauss’ achievements in
geometry — it will be useful to briefly pose the an-
tinomy of discreteness vs. continuity. The antinomy
can only be overcome if the assumption of what one
might call “‘unilegality’’ — the notion that one set of
laws is given once and for ail (when? why these?) — is
discarded and replaced by an evolutionary conception
of substance which embodies, through the creation of
qualitatively new individuals, the idea of changes in
the laws that govern the process of evolution, i.e.
changes in the ‘laws of nature.” For geometry,
conceived of not axiomatically, but as the science of
real space, this means discarding the notion of absolute
space and that of one geometry characterized by one



metric along with it. Thus the introduction of metric

inhomogeneity, intrinsically determined, rather than

the axiomatic introduction of the negation of the
parallel-axiom, which simply leads to a metrically
homogeneous space of different constant curvature
than Euclid’s and leaves the notion of absolute space
completely intact, defines the significant advance
over Euclideanism. Looking ahead, with Riemann this
leads toward the systematic distinction between the
topological and metric properties of space, and a
given topological manifold is demonstrated to be
susceptible of different metric relations — the very
idea to which Cantor, by focusing on the invariance
character of the metric, ultimately gives coherent
epistomological expression in his netion of different
orders of the transfinite.

A full understanding of the significance of Fourier’s
function-theoretical results must proceed from the
idea of functions as representing the internal relations
of substance and of space as the complex of such rela-
tions; or conversely, from viewing functions as

dimensionally scaled down projections of the world

geometry in a given region or over a given period of
time. As we pointed out al?ove. this was at least in
principle the standpoint of Descartes in his develop-
ment of analytical geometry, where space is regarded
as composed of the entirety of curves traced out by
mass points in motion. It is rigorously adopted in
Riemann’s investigations of functions of a complex
variable, where the surface determined by a complex
function is no longer simply a kind of visual aid
guiding our intuition, but becomes an essential, in-
dispensible part of the theory; and it finds its most
developed expression in the key notion of Hermann
Minkowski’s formulation of Einstein's Relativity
Theory, the notion of the “world line’’ of a particle in
the four-dimensional space-time manifold.

On the basis of such a unified perspective on
geometry and function theory, which leads Riei..ann
to the establishment of an entirely new branch of
mathematics — topology — we can describe the effect
of Fourier’s results as having demolished what is the
precise analogue of “Euclideanism’’ in analysis: the
assumption — formulated most explicitly in
Lagrange’s Théorie des fonctions analytiques (1797)
— that the concept of a functiony = f(x) is identical
with that of an analytical expression in X represen-
table by a power series

y=P((x)=a, +211><+212x2 + ..., etc.

The analogy between ‘‘Euclideanism’ (or, actually,
more broadly, the homogeneity of space) and the re-
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quirement of analyticity holds in the sense that both,

within the framework of Newtonian dynamics, are
consequences of the hypothesis of ‘‘hard ball’’ par-
ticles as the ultimate constituents of matter. To show
this for analytic functions, we first have to take a
somewhat closer look at the latter. The following is a
sufficiently precise definition of Lagrange’s intended .
concept:

f(x) is analytic in a neighborhood of x=a if and only
if it is representable there by a convergent Taylor
series, i.e., a series of the form

-f(x) = f(a) 1) (x —a) w1 (a)(x —a)? + ... etc.

An analytic function, so defined, has a number of
remarkable properties, most importantly for our
present purpose it is ‘‘very smooth,” i.e.; it has an

" unlimited number of continuous derivatives. If we

think of the graph of such a function as the path of a
Newtonian particle in motion, it becomes immediately
obvious why Lagrange regarded only analytic func-
tions as relevant and admissable for the mathem-
atical representation of natural phenomena. Assume,
contrary to the requirement of analyticity, that at a
point X =b the function f(x) representing the motion of
a given particle, though continuous, ‘is not dif-
ferentiable; e.g. let f(x) have a sharp corner at x=b.

v A
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Then f(x) does not have a unique tangent at b, or, in
terms of the particle, at x=b we cannot determine its
momentary direction. This, of course, would violate
the otherwise assumed completely deterministic
character of the particle’s behavior. Or, to express the
whole affair in positive terms: for analytic functions,
knowledge of the values of the ordinate for an arhi-
trarily small piece of the abscissa determines the
course of the function in its entirety. Thus let the y-
values be known for an arbitrarily small neighborhood
around x=0. Then we know the values of the differ-
ential quotients of all orders at x=0 and, hence,
because

2

floy=a, flo)=a,, f"(0o)=2a,,.. ctc.

for the coefficients a,, a, , a,, ... of the power series,
know the whole function. It is precisely this deter-
ministic quality of analytic functions which to
Lagrange recommended their exclusive adoption for
mathematical physics.

Interestingly enough, a much broader explication of
the concept of a function had been given some 50 years
before Lagrange’s Théorie by Euler. In his investi-
gations of the problem of the vibrating string he had
been forced to consider functions y = f(x) defined by
an ‘‘arbitrary’’ curve ( ‘“libero manus ducta’’) and
subject only to the condition that any parallel to the y-
axis intersects the curve only once. However, in the
Introductio in analysin infinitorum (1748), Euler
reverts to the restrictive identification of a function y
of x with an ‘“‘analytical expression” in x. This can
hardly be surprising, for Euler’s mathematics was
fully grounded in the conceptual framework of
Newtonian mechanics.

A systematic extension of the concept of a function
beyond the analytic ones became possible only when
physicists posed for themselves the problem of
mathematical comprehension of phenomena which in
principle transcended the scope of mechanical
theories, or, more accurately, when they adopted a
view of certain physical phenomena which was totally
at variance with that of Newtonian mechanics.

Such was the case with Fourier’s theory of heat
which he had worked out as early as 1807 but did not
fully publish until the appearance in 1822 of his Théorie
Analytique de la Chaleur. While there is no immediate
documentary evidence to this effect, Fourier’s con-
cept of heat appears to be derived as a direct applica-
tion of Kant’s notion, in the Metaphysische Anfangs-
grinde, of a continuum of attractive and repulsive
forces. I quote from the Theorie Analytique, ch. I,
sect. II, ‘“‘Preliminary Definitions and General
Notions™’:

L

The free state of heat is the same as that of light; the
active state of this element is then entirely different
from that of gaseous substances. Heat acts in the same
manner in a vacuum, in elastic fluids, and in liquid and
solid masses, it is propagated only by way of radiation,
but its sensible effects differ according to the nature of
bodies.

Heat is the origin of all elasticity; it is the repulsive
force which preserves the form of solid masses, and
the volume of liquids. In solid masses, neighboring
molecules would yield to their mutual attraction if its
effect were not destroyed by the heat which separates
them.

This elastic force is greater according as the tem-
perature is higher: which is the reason why bodies
dilate or contract when their temperature is raised or
lowered.

The equilibrium which exists, in the interior of a
solid mass, between the repulsive force of heat and the
‘molecules’ attraction, is stable; that is to say it re-
establishes itself when disturbed by an accidental
cause.

The field-theoretical implications define the
strength of this conception and its obvious superiority
over Lavoisier’s ‘“‘caloric’’ (heat fluid) theory. Ac-
cording to his own testimony in the ‘‘Preliminary
Discourse’ to his work, Fourier arrived at his notion
of heat and of the action of heat through consideration
of the effects of the sun on the biosphere; and, at one
point, his field conception — even to the extent of
regarding the field as primary and as determining the
properties of the bodies immersed in it — becomes
quite explicit, if only in a questioning, speculative
manner:

But independently of these two sources of heat
(terrestrial and solar), is there not a more universal
cause, which determines the temperature of the
heavens, in that part of space which the solar system
now occupies? Since the observed facts necessitate
this cause, what are the consequences of an exact
theory in this entirely new question; how shall we be
able to determine that constant value of the tem-
perature of space, and from it the temperature which
belongs to each planet?

Beyond such specifics it is useful to take a brief look
at the overall breadth and scope of Fourier’s life ac-
tivities to get a sense for the source of his accomplish-
ments and the decision and self-confidence with which
he puts forth his new ideas.

From 1796 to 1798, Fourier teaches at the _Ecole
Polytechnique, an institution of the French Revolu-
tion, founded for the purpose of training the officers of
the revolutionary armies. At the time, the school was
under the leadership of the geometer Monge, later
Minister of the Navy under Napoleon. Both Monge and
Fourier participate in Napoleon’s expedition to Egypt,
and after their return Fourier becomes prefect of the
Department Isére in Grenoble .(until 1817). What he
expected from his work is clear from his own words:
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A temperature surface is formed by connecting the
ordinates which are extended from points on the surface

oL q

of the disc. The length of the ordinate represents the
temperature at that point. ‘

Suppose that at time t = 0 the tip of a hot pin is placed at
point p on line ds. Such a curve is not susceptible to the
analylitical treatment required by Lagrange, but rather
may be expressed by a trigonometric series as
presented by Fourier.
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It is easy to judge how much these researches con-
cern the physical sciences and civil society, and what
may be their influence on the progress of the arts
which require the employment and distribution of heat.
They have also a necessary connection with the system
of the world, and their relations become known when
we consider the grand phenomena which take place
near the surface of the terrestrial globe.

The principal problem Fourier considers is that of
the propagation of heat in solids of different geo-
metrical shapes and under arbitrary initial and
boundary conditions. Take, for example, a metallic
disc of large diameter which at one part of its boun-
dary is exposed to a source of heat of constant tem-
perature, say of 100 degrees, and at another part of its
boundary is immersed in ice water. After a sufficient
amount of time has elapsed, we can then ask what the
stationary temperatures at each point of the surface of
the disc will be as the result of the propagation of heat
through the disc under the given boundary conditions.
Now suppose that an ordinate be raised perpendicular
to the plane of the disc whose length is proportional to
the stationary temperature at that point. The end
points of the ordinates will represent a curved surface
extended above the plane of the disc. We arrive at the
next type of propagation problem, if we assume that at

a certain time t=0 the heat source is removed from
the boundary 'of the disc, and we want to find an
analytic expression for the continuous change with
time of the shape of the curved surface under the
initial conditions represented by the stationary
temperatures att=0. ,

As a general expression for the propagation of heat
in three-dimensional homogeneous solids, Fourier
wrote down the partial differential equation
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where v = f(x,y.z.t) is the temperature at time t and
point (x,y,z), and C a constant depending on the solid
under consideration. The difficulties in integrating
this equation arise from the fact that it lies in the
nature of our initial value problem just discussed that
v at t=0 may be an entirely arbitrary (continuous)
function which we can trace as a curve through the
end-points of the temperature ordinates, but which, in
general, will not be given in the form of an analytical
expression that can be subjected to the required
analytical treatment. Fourier solves the problem by




26 -

showing that any function whatsoever (‘‘des fonctions
absolument arbitraires ), including functions with a
certain number of discontinuities in a given interval
may be represented by one analytical expression for
the entire interval, viz, by a convergent trigonometric
series of the form

f(x)=Y2a, +a cosx+a, cos2x+..

(II) + bl sin X + bzsm 2X + .'”

. oo
M

- + i - . . e .
= Z (4, cos nx +b_ sin nx)

n=|

where in the most general case the coefficients a
and bn are given by

| a7
f(x) cos nx dx,

(111)
2T

b, :i[o f(x) sin nx dx.

The idea behind the approximation of an arbitrary
function by means of superimposition of different
trigonometric functions is best explained graphically:
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By means of the Fourier series representation of
very general types of functions the scope of the con-
cept of functional relationships susceptible of mathem-
atical treatment ( mathematisch behandelbar) was,
of course, tremendously increased and Lagrange’s
world was shattered. In his own treatment of functions
representable by a trigonometric series (Gottingen,
1854), Riemann reports the existence of a document in
the archives of the French Academy which shows that
when Fourier first presented his results to the
Academy in 1807, his assertion that entirely arbitrary,
graphically given functions may be expressed by a
trigonometric series caught the aging Lagrange
unaware to such an extent that he opposed it in a most
virulent manner.

Such anecdotes aside, the broad epistemological
consequences of Fourier analysis can readily be
brought out as follows: I developed above the appro-
priateness of analytic functions to the thoroughgoing
determinism of Newtonian mechanics, associated
specifically with the discrete, ‘“hard ball,”’ particle

conception of matter. However, even though I have

counterposed Fourier’s developing field theoretical
‘notions and his introduction of arbitrary functions
directly to Lagrange’'s brand of Newtonianism, it
should not be assumed that it is the strict determinism
of the latter which is tossed overboard in Fourier’'s
theory and the field theories developed after him.
Determinism is not the differentia specifica of
Newtonian mechanics and there is nothing in the
mathematics of classical field theory which is in-
compatible with a deterministic position. Thus
Newton’s theory of gravitation is actually most con-
vincingly and elegantly formulated in the field theor-
etical framework of the mathematical potential
theory of Poisson and Gauss. The difference lies else-
where: consider again the arbitrary temperature
function defining a typical Fourier initial or boundary
value problem. In principle we will be confronted
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there with a very ‘bad’” looking curve repres-
enting an extremely varied (but, in general, con-
tinuous) distribution of values. Still, we have to get an
analytical grip on even the most inhomogeneous such
‘‘scalar field,” if the heat propagation problem in that
case is to be solved. In Newtonian dynamics, on the
other hand, that kind of problem will, at least in
principle, never arise. We will never have to face
more than a finite or at most discrete distribution of
phase quantities, and the necessity for the introduc-
tion of arbitrary initial value functions will never
come up.

This is where the crucial ontological difference
between field and particle conceptions of matter (or
substance) directly comes to the fore. The important
sense in which the field concept defines a critical
advance over atomism is in its monistic conception of
substance, so that all relations become empirical,
internal relations, and through the mutual deter-
mination and interpenetration of the whole and its
parts the possibility at least — which does not exist for
the Newtonian system — for the introduction of the
kind of “‘freedom’’ demanded by a coherent solution to
the discreteness-continuity antinomy presents itself
for the first time.

These are, of course, old problems, discovered well
before Schelling attacked atomism and Hegel, in turn,
Schelling’s amorphous monism.

Parmenides, more astute than Schelling, had long
ago concluded that if substance is one and homo-
geneous, then change cannot exist and the appearance
of change must be an illusion. Atomistic conceptions
were introduced by Democritus and Leucippus to save
the appearances and to make change possible at least
in the form of changes in the combination of atoms,
i.e. in their external relations. Thus, change was
reinstituted by, so to speak, pushing its illusory
character beneath the threshhold of perception.
Parmenides’ problem had only been covered over; it
still awaits its solution.
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3. Riemann: The World Manifold

Discussing the mathematics of Einstein’s relativity
principle, Hermann Minkowski, in a lecture before the
Gottingen mathematical society, Nov. 5, 1907, in-
troduced his paper with the following remark:

Mathematicians are particularly well pre-disposed
to accept the new conceptions, because to do so is a
matter of getting acclimated to a conceptual mold
which has long been utterly familiar to them.
Physicists, on the other hand, must now at least in part
invent these concepts anew and with great effort cut a
path through a jungle of unclarities, while quite close
by the mathematician's well-constructed road built
long ago leads comfortably forward. Indeed, all in all
‘the new hypotheses, if they actually do represent the
phenomena correctly, would almost mean the greatest
triumph which the application of mathematics has
“ever shown. What is at issue — to put it as hriefly as
possible — is that the world in terms of space and time
in a certain sense is a four-dimensional, non-Euclidean
manifold. To the glory of mathematics and the boun-
dless astonishment of the rest of mankind, it would
become apparent that the mathematicians, purely in
their fantasy, had created a whole large field to which
one day, without this ever having been the intention of
these idealist fellows, should accrue perfectly real
existence.

On a separate occasion Minkowski even speaks of a
kind of ‘‘pre-established harmony between pure
- mathematics and physics.”’

It is, of course, at first sight quite astonishing that

more than 50 years before the establishment by
Einstein of the Special and the General Theory of
Relativity Gauss and particularly Riemann created
in full the mathematical forms in which relativity
theory is most appropriately cast. However, a mere
cursory reading of the most important of Riemann’s
original treatises, first published in a complete edition
including an appendix of philosophical fragments by
H. Weber and Dedekind in 1876, makes clear that no
pre-established harmony assumption needs to be
introduced to explain this phenomenon. There is
ample documentary evidence that ever since his days
as a student in Berlin (1847-1849) Riemann, who, inci-
dentally, started his career as a student of Protestant
(Evangelical-Lutheran) theology, was embarked
upon a most broad-based epistemological project of
attempting to create one comprehensive

mathematical-theoretical framework for the unified

expression of the phenomena of light, elec-
tricity, magnetism, heat, and gravitation, then deait
with by almost totally separate branches of physics.
Throughout his life he regarded this as his main work
(“meine Hauptarbeit’’) and therefore, if the question
is asked why Riemann’s ‘“‘purely mathematical”
developments are so wonderfully appropriate to the
most advanced developments of general relativity,
the answer is straight forward: not only was Riemann

deeply involved in coping with the same general type
of problems as Lorentz, Poincaré, Einstein, et al. half
a century later, but the scope of his project of a
“unified field theory,” as it would now be called,
undoubtedly exceeded that of Einstein, employing a
methodological rigor which Einstein approximated
only on a few rare occasions. In the following I shall
prove this both directly and in terms of the indirect
evidence provided by a unified analysis of Riemann’s
discoveries in what are nowadays too easily regarded

as entirely separate fields of mathematical inquiry. In-

the process one thing in particular should become
unquestionably clear — that the contemporary view of
Riemannian geometry, based principally upon the
interpretations of Christoffel, Ricci, Levi-Civita, and
more recently Hermann Weyl are altogether too
narrow, and in their restrictiveness import precisely
those problems into theoretical physics which
presently stand in the way of expanding general rela-
tivity beyond its present limitations into a theory of
the unified field.

I start with an account of Riemann’s most explicit
and detailed extant treatment of the unified field
problem, included among the philosophical fragments
under the title ‘“‘New Mathematical Prmc:ples of
Natural Philosophy.”” (A footnote in the text says:
“Discovered on March 1, 1853.”") Referencing the
piece (though not necessarily the particular version
contained in the appendix to the collected works),
Riemann in a letter to his brother, dated Dec. 28, 1853,
writes:

My other investigation on the connection hetween
electricity, galvanism, light, and gravity I had
resumed immediately after the completion of my
Habilitationsschrift , and I have gotten far enough with
it so that without second thoughts I can publish it at this
time.

The key elements of the theoretical sketch are as
follows:

First, the methodological premise — ‘‘Let us try to
deduce it (the internal state or constitution of pon-
derable bodies) by way of analogy from our own inner
(mode of) perception.”’

There follows a number of specifics on the function-
ing of the soul based on the psychology of Herbart.
These are not important. What matters is the metho-
dological rigor embodied in the quote. Mind and body
are of the same world abiding by the same sets of
laws, and in these the laws of the mind are epistemo-

logically prior. I have developed this in detall in
Section I.

Second, the 1nternal relations of substance — There
exists a space-filling substance ( Stoff) — later called



aether — which has the properties of an incompres-
sible homogeneous fluid without inertia. Both gravi-
tational and electromagnetic effects are propagated
through and explained as modifications of the space-
filling aether.

The effects of ponderable matter upon ponderable
matter fall into two classes: 1. attractive and
repulsive forces, inversely proportional to the square
of the distance; and 2. light and heat radiation. These

effects are characterized by means of one unified
action principle (“Wirkungsgesetz’’), derived on
the basis of the assumption that aether particles only
act upon their immediate neighborhood.

The unified action finds its expression in a force
which acts to change the form of the infinitesimal
aether particle at point 0=(x,y,z) and can be thought
of as resulting from forces which would effect a
change in theJength of the line element s ending at
O=(x'y'z’). The mathematical form of the action
principle is the following:

If dV is the volume of an infinitesimal aether par-
ticle at point O and time t, and dV '’ the volume of the
same particle at t, then the force resulting from the
difference in the two states of the aether which acts to
elongate ds is given by |

~dV =dV’ ds — ds’
a7y *b-Tgg

This law can be thought of as split into two parts: 1.

the resistance offered by an aether particle to a’

change in volume; and 2. the resistance offered by a
physical line-element to a change in length. Gravi-
tation and electrostatic attraction and repulsion are
based on the former, propagation of light and heat arid
the electrodynamical or magnetic attraction and
repulsion on the latter.

Ricmann concludes his sketch as follows:

Now there is no reason to assume that the effects of
both causes change with time in accordance with the
same laws: thus adding up the effects of all the earlier

forms of substance-particle upon the change of the
line-element ds at time t, then the value of

dads
dt

which they attempt to bring about becomes
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How now must the functions ¥/ and ¢ be constituted so
that gravitation, light and radiating heat can be propa-
gated by the spatial medium?

Parenthetical Note on Riemann’s
““ A Contribution to Electrodynamics’’
(1858)

The significance of the above sketch of a unified
physical theory is underlined by the fact that the 1858
piece suggesting an electromagnetic theory of light is
directly based upon the general ideas put forth in the
sketch. Riemann writes in 1858:

"I have found that the electrodynamic effects of
galvanic currents can be explained if one assumes that
the action of one electrical mass upon the otheérs does
not occur instantaneously, but is propagated to them
with a constant velocity (within the errors of ob-
servation equal to the speed of light). The differential
equation for the propagation of force under this
assumption becomes the same as that for the propa-
gation of light and of radiating heat.

Riemann’s mathematical elaboration of this idea is
based upon introducing a time variable into the
condition for the potential function U of electrical
masses, replacing the usual condition for the
simultaneous scalar potential
32U 3%U 382U
372 = —4np
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by the condition for what nowadays is called a
‘“‘retarded’’ potential

02U/ , [a3%*U a?u 32U
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where ¢ is a constant (velocity).

Potential functions for (I) and (II) respectively will
then be of the form

f(t)
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Retarded potentials were, of course, to play a key
role in H.A. Lorentz’ theory of the electron, the direct
forerunner of Einstein’s Special Relativity. Fur-
thermore, it can be proved (as was done by Levi-Civita)
that Riemann’s results in the 1858 paper are quite
sufficient to derive Maxwell’s equation of the electro-
magnetic field without complicated recourse to

" displacement currents and what not. (Interestingly,

Clausius, whom Maxwell quotes as his source in his
dismissal of Riemann’s ideas, regarded Riemann’s
formulas as ‘“‘“mathematically’’ (') unsound.)

At this point, rather than proceeding to a more
detailed analysis of Riemann’s speculations on
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natural philosophy, I will merely emphasize two
things for purposes of reference later on. First, the

“unified field’’ and its carrier, the aether, have an
independent existence and determine the behavior of
ponderable matter. Second, different field actions are

unified into one action principle which in turn deter-
mines the geometry of the field by determining the

length of the infinitesimal line element ds for the
neighborhood at any given point. Both points will be
crucial as we proceed to Riemannian geometry and
the question of the internal determinations of n-dimen-
sional manifolds. Beyond this, of course, an outline of
Riemann’s attempt at a unified physical theory should
be quite sufficient at this point to establish, at least in
principle, the above claim concerning both the scope
and the depth of Riemann’s overall project.

Riemann and Faraday

In a famous 1894 Vienna lecture on ‘“Riemann and
his significance for the development of modern
mathematics,”’Felix Klein draws a direct parallel
between Riemann’s accomplishments in mathematics

and Faraday’s in physics, locating the similarity
specifically in their ‘‘near-action’’ notions:

What in physics is the banishing of far-actions, the
explanation of the phenomena by means of the internal
forces of a space-filling aether, this, in mathematics, is
the understanding of functions on the basis of their
behavior in the infinitely small, in particular,
therefore, on the basis of the differential equations
they satisfy.”

There undoubtedly exists that parallel, but we need

to explain why. The necessary point is most easily
made by drawing the conceptual connection between
Faraday’s notion of the electromagnetic field and
Riemann’s concept of an n-dimensional manifold,
further elucidating both.

Under the influence of the same ‘“‘Naturphilo-
sophie’’ conceptions which led Oersted to his
discovery of electromagnetism — conceptions trans-
mitted to England by Coleridge, et al. — Faraday
arrived at the notion of the electrostatic and magnetic
“line of force,”” basic to his full field-theoretical
conceptions of electricity and magnetism. He arrived
at this notion some ten years before his own resear-
ches — falling mainly into the two decades between
1830 and 1850 — in the 1831 discovery of the induction of
an electrical current in a wire by a moving magnet
yielded the first convincing empirical verification of
the existsnce of such lines. The discovery of induction
in the first place, of course, established an important
kind of symmetry of electrical and magnetic forces:
just as electrical currents produce a magnetic effect,

so Faraday had now shown that magnetic forces can
produce electrical effects. However — and this is where
the discovery of magnetic induction points, well
beyond itself — only the phenomenon of induction
strictly requires the assumption that the actual
energy giving rise to the inductive current is located
— along the magnetic lines of force — in the medium
surrounding the magnet, rather than being con-
centrated at the poles, acting upon bodies at a
distance. Indeed, the strength of the current induced
in the wire is directly proportional to the number of
lines of force cut by the surface enclosed by the wire.
Faraday’s case for the independent significance of
the lines of force was greatly strengthened by the
results of the application of his subsequent researches
in electro-chemistry to electrostatic induction. Analy-

. zing the phenomena of electrochemical decomposition

he found that it was not — as the Newtonian theory had
maintained — the (distance-) action of the poles
(cathode, anode) upon the electrolytic solution, but
the actual current flowing through the solution that
produced the observed effects: ‘‘The metallic poles
would appear to be mere terminations of the decom-
posable substance.”’ The insignificance of poles was
proved by passing electricity through a salt solution
and then simply letting it discharge as a spark into the
air. Even in the absence of poles decomposition oc-
curred in the usual fashion. This elimination of the
notion of poles as centers of force, and consequently
the elimination of (straight line) action of central
forces at a distance, of course, served to reinforce
Faraday’s earlier conclusions concerning the lines of
force and to further focus his attention on the medium
doing duty as the carrier of these lines. Such a focus by
itself is an important departure from the Newtonian
framework where knowledge of the position and
momentum of a particle are regarded as sufficient to
completely predict the entire future course of events.

In electrostatics, the near-action hypothesis
associated with the line of force conceived of as a line
of strain or tension in a medium immediately proved
successful, leading to the discovery of the new
material constant of specific inductive capacity and
forcing a revision of Coulomb’s Law of Electrostatic

action
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r

which had been modeled on Newton’s Laws of Gravi-
tational Attraction, with € assumed to be of the same
universal character as the gravitational constant g in



Still, the final step toward a ‘“‘pure’’ field-theory

conception of electricity and magnetism had yet to be

made. Both in electrolysis and in electrostatics the
line of force could be conceived of as a chain of par-
ticles polarized (deformed) by forces acting upon the
endpoints of the chain. Not so in the case of magne-
tism. In 1845, Faraday demonstrated that the
magnetic lines of force, rather than being composed of
particles, actually acted upon the particles of any
given substance so as to bring them in line with (para-
magnetics ) or set them across ( diamagnetics) the
lines of force of a given magnetic field.

Interestingly, the work that followed on trying to
find an explanation for the phenomenon of dia-
magnetism brought Faraday into almost direct
contact with Riemann who, after two years of study at
the University of Berlin, had returned to Gottingen in
the spring of 1849. There, he attended the lectures on
experimental physics and became an active partici-
pant — notably also in the laboratory work — in the
mathematical-physical seminar of Withelm Weber.

Now it was Weber who, after the publication by
Faraday of his discovery of diamagnetism, had
proposed and thought that he had experimentally veri-
fied the theory that diamagnetism, just like the much
stronger paramagnetism, involved polarity, but a
polarity opposite to that of paramagnetics. This would
have explained Faraday’s observation, and without
taking any recourse whatever to the ‘‘lines of force”
notion. Understandably Faraday l!ooked for an
alternative interpretation of Weber’s experimental
results, coming up in the process with the key concept
of permeability and a way of reducing the notion of
polarity tothat of relatively high concentrations of lines
of force. The way the concept of permeability took
shape can be seen from the following note in which
lines of force are thought of in analogy to rays of light:

I cannot resist throwing forth another view of these
phenomena (of para- and diamagnetism) which may
nossibly be the true one. The lines of magnetic force
may perhaps be assumed as in some degree resem-
bling the rays of light, heat, etc. and may find difficulty
in passing through bodies, and so be affected by them,
as light is affected.

Thus diamagnetics are relatively poor conductors
(relatively impermeable) of magnetic lines of force,
and deflecting them into the more easily permeable
surrounding medium, will seek out points of least
magnetic action in an inhomogeneous field. This,
rather than reverse polarity, accounts for their ap-
parent repulsion by a strong magnet. Paramagnetics
react in the opposite fashion. Furthermore, since the
permeability of a substance is measured relative to
the surrounding medium, diamagnetics can be made
to behave like paramagnetics (and vice versa) in the
obvious way.
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This leaves the lines of force as the only thing that
has an absolute significance. They represent the
magnetic force in the space surrounding a magnet,
their strength — even in the case 'of permanent
magnets — being determined not by some imaginary
““amounts of magnetism’’ concentrated at the poles,
but by the condition of the magnetic substance as a
whole through which the lines of force run as con-
tinuous curves, converging at the endpoints and
creating the appearance of polarity. They do not even
require a carrier medium for their existence; they
exist

not by a succession of particles, as in the case of static
electric induction...but by the condition of space free
from such material particles. A magnet piaced in the
middle of the best vacuum we can produce, and
whether that vacuum be formed in a space previously
occupied by paramagnetic or diamagnetic bodies, acts
as well upon a needle as if it were surrounded by air,
water, or glass; and therefore these lines exist in such
a vacuum as well as where there is matter.

While obviously a full account could not be given
here, it is an exciting thing to follow the evolution of.
Faraday’s ideas from the inception of the mere notion
(Vorstellung) of the line of force through its develop-
ment into a scientific hypothesis and finally a compre-
hensive theoretical concept ( Begriff), with each step
of the development consolidated and empirically
anchored by select experiments. The final conception
Faraday arrives at — put forth as early as 1846 — is
that of a field of criss-crossing lines of force as the
actual spatial location of physical energy, not itself in
need of a substantial carrier, but capable of trans-
porting othér physical phenomena, such as light.
Gravitational lines of force are later added to the
magnetic and electrostatic ones, thus completing the
picture so as to encompass all known types of physical
force and action. As Maxwell — commenting here
specifically on gravitation — wrote in a letter to
Faraday in response to the latter’s full presentation of
his ideas in an 1857 paper:

...then your lines of force can ‘‘weave a web across the
sky’’ and lead the stars in their courses without any

necessarily immediate connection with objects of their
attraction.

It was not, however, Maxwell, but, ironically, the
then-assistant in the mathematical-physical seminar
of Faraday's opponent Wilhelm Weber, Bernhard

'Riemann, who in 1854 in his Habilitationsvortrag

(Inaugural Address), ‘‘On the Hypotheses upon which
Geometry is Based,” and in pursuit of his own ideas
for a unified physical theory, drew the radical conclu-
sions from Faraday’s work.
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Note on Maxwell: Indifferentism

It is one of the more remarkable aspects of Max-
well’s Treatise on Electricity and Magnetism that
while throughout its two volumes the author claims to
be an ardent follower and advocate of Faraday’s
views of electromagnetic phenomena, there nowhere
appears a coherent exposition of these views: indeed
the only physical theories elaborated at length are
those of the ‘‘atomists’’ and ‘‘far-action’’ theorists,
Ampére and Wilhelm Weber — Faraday's leading
opponents. This led Felix Klein to state in his Lectures
on the Development of Mathematics in the 19th
Century that R

‘““there can be no doubt that Maxwell was an atomist at

heart....If Maxwell in his Treatise nonetheless chooses
~ exclusively the phenomenological mode of presenta-

tion, I regard this as a conscious act of resignation.

Klein is too polite, and matters are not that simple.
- The attitude displayed by Maxwell in his Treatise is
precisely that mood of weariness and indifferentism,
rightly castigated by Kant as the archenemy of
scientific inquiry, ‘‘the mother, in all sciences, of
chaos and night.”’

Citing from the preface of the Treatise:

I was aware that there was supposed to be a difference
between Faraday’s way of conceiving phenomena and
that of the mathematicians, so that neither he nor they
were satisfied with each other’s language. I had also
the conviction that this discrepancy did not arise from
either party being wrong....For instance, Faraday, in’
his mind’s eye, saw lines of force traversing all space
where the mathematicians saw centers of force at-
tracting at a distance; Faraday saw a medium where
they saw nothing but distance: Faraday sought the
seat of the phenomena in real actions going on in the
medium, they were satisfied that they had found it in
the power of action at a distance impressed on the
electric fluids.

When I had iranslated what I considered to be
Faraday’s ideas into a mathematical form, | found
that, in general, the results of the two methods coin-
cided, so that the phenomena were accounted for, and
the laws of action deduced by both methods. ..

Observe that embodied in this is a virtual restate-
ment of the discreteness-continuity antinomy, and
then compare Kant’s and Maxwell’s reaction. The
former regards the understanding of the necessity of
such antinomies as crucial and indispensable to the
progress of scientific knowledge, the latter perceives
mere differences in formulation, nothing that could
not be straightened out by choice of the appropriate
mathematical method.

Faraday, in no way shared Maxwell’s attitude.
Especially in the reports on his later researches,
and contrary to Maxwell’s misrepresenta-
tions (cf., below) of his expicitly stated views, he
regarded the electromagnetic and gravitational field,

defined by the lines of force, as the primary physical

_entity. Far from being satisfied with letting fields and
- particles stand indifferently side by side, he actually

attempted to interpret matter as a special field condi-
tion:

Faraday: there are the lines of gravitating force,
those of electrostatic induction, those of magnetic
action...I do not perceive in any part of space, whether
(to use the common phrase) vacant or filled with

matter, anything but forces and the lines in which they
are exerted.

- And now Maxwell: He (Faraday) even speaks of the
lines of force belonging to a body as in some sense part
of itself, so that in its action on distant bodies it cannot
be said to act where it is not. This, however, is not a_
dominant idea with Faraday. I think he would rather
have said that the field of space is full of lines of force,
whose arrangement depends on that of the bodies in the
field, and that the mechanical and electrical action on
each body is determined by the lines which abut on it.

On the contrary, Faraday without a doubt had the
astuteness and resolve to pursue his ideas to their
necessary conclusions rather than being satisfied with
Maxwell’s suggested compromise. However, as a
former bookbinder’s apprentice and lacking all for-
mal training in mathematics, the task of formulating
his ideas with the necessary precision and, simul-
taneously, universality, which would have brought to
the fore the implied deep-rooted epistemological
problems of a ‘“‘pure’ field theory, was beyond his
grasp.

This, parenthetically — and especially in com-
parison with Riemann — allows a brief but important
point to be made on the role of mathematics in the
development of scientific knowledge.

Certainly, it is not merely or primarily a kind of
formulation aid which permits a more compact ex-
pression of an already existing, fully developed
physical theory. Rather, it is involved in the formu-
lation of a new theory starting with the earliest forma-
tive stages. There its principal task is to create con-
crete universals necessary to transform mere notions
(““Vorstellungen’’ ) into testable scientific hypotheses
establishing at the same time a crucial link between
the scientific problem under consideration and its
broader epistemological context. In general, it is
precisely its close affinity to epistemology which
makes mathematics (not to be mistaken for a
collection of more or less sophisticated computational
devices) indispensable to the process of theory forma-
tion. No consistent mathematical framework can
claim completeness (Gddel): thus appropriate
mathematical rigor most directly leads to the
detection of epistemological defects and the associa-
ted more fundamental antinomies necessarily em-
bodied in any one relatively complete scientific
concept. But back from Hegel to Maxwell.



The basic problem of the Faraday-Maxwell Theory
of the electromagnetic field, as summarized by the
,familiar Maxwell-Hertz field equations, consists in the
obviously paradoxical conclusion that the theory is
incompatible with the existence of discrete electrical
charges. This is best demonstrated in the theoretical
context of H.A. Lorentz’s Theory of Electrons; which
is an immediate offspring of the Faraday-Maxwell
Theory. The mathematical theory of electrons is
based on the following assumptions (which either are
direct consequences of or immediately cohere with the
Faraday-Maxwell Theory):

An electron is an electrical charge distributed over
a certain finite volume element of the aether with
volume-density P (9), thus separating the aether into
an interior (to the electron) and an exterior space.
Conversely, we can think of the electron as a specific
loca! modificasion of the state of the aether. In either
case, it is coherent to regard the electrons as movable
while the aether remains at rest. To the extent that the
Faraday-Maxwell Theory conceives of electro-
magnetic forces as conditions of stress in the aether,

and the aether pervades the electron, the task of

formulating the mathematics of the behavior of

electrons, therefore, reduces to adapting the Maxwell-
Hertz equations for the free (uncharged) aether to the
case of positive volume-densities. Only minor
modifications are required, so that the following
system of equations governing the behavior of free
electrons goes over into the usual Maxwell-Hertz

equations, if in I and I1I we let the volume density of p
g0 t0 zero:

(D | divE = p,

(ID divH=0

1D curl H = %(_g_tli +- pV), .
(IV) curl E = _% g_l,t'l, ,

where E and H are the electric and magnetic field
strength vectors, ¢ a constant (speed of light)
depending on the aether, and V. a vector representing
the velocity of the charge so that pV is the convection
current.

Now consider the force acting upon a charge
(electron) moving with velocity V in an electro-
magnetic field characterized by (I)-(IV). According to
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Lorentz, this force (‘‘Lorentz force’’) per unit volume
is given by

V) F=p[E+3€(va)},

where (VxH) is the vector - or cross-product of
charge velocity and magnetic force. The principal
defect of the Faraday-Maxwell Theory consists in the
fact that we must demand that

(VD) p[E+-<-1:-(Vx_H)]_=O

at each individual point of the electron. Otherwise,

since the charge elements of a given electrical charge

are all of the same sign, and since no cohesive forces

can be derived from (I)-(IV), the ‘Coloumb repulsive
forces for any finite volume element of the charge would
simply blow the charge apart. On the other hand, if (VI)
holds, then no stationary charge (V=0) can exist,

‘since (VI) implies that p= 0. Hence, our conclusion,

spelled out above, that the Faraday-Maxwell Theory

is incompatible with the existence of charges.

From the epistemological standpeint of the discrete-
ness-continuity antinomy this result is, of course,
hardly surprising. As a ‘“pure’’ field theory, the
Faraday-Maxwell Theory has no need for discrete
individuals, and we should not expect that the Max-
well-Hertz equations, which describe all physical
actions in terms of continuous stress forces in a
continuous medium, will allow us to derive the
existence of forces making possible the packaging of
the continuum forces into discrete bundles. On the
contrary, it will be demonstrated in the treatment of
Cantor’s manifold theory below, that the assumption
of the existence of such ‘“counting forces” on the
“same level” (order of the transfinite) as that of the
‘““forces counted’’ will necessarily lead to contra-
diction and paradox (10). The necessity of the exis-
tence of discrete individuals is intimately bound up
with the concept of a “non-linear’’ continuum, and the
problem will be taken up again after that concept has
been defined. '

The Faraday-Maxwell Theory’s difficulties with the
existence of charges may at first sight appear to be
solvable, if, starting from the empirical evidence of
the existence of electrons (e.g. cathode and -rays),
we postulate their existence in the form of perfectly
rigid bodies, and then attempt to explain their in-
tegrity by means of cohesive forces of a non-electro-
magnetic character. A first attempt in that direction
was made by Henri Poincaré in his 1905 paper “Sur la
dynamique de I'électron,”’ where he introduces a
cohesive pressure p without, however, defining it
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beyond specifying what its magnitude has to be. A later
attempt is due to Einstein. In a 1919 paper Do gravi-
tational fields play an essential role in the structure of
the elementary particles of matter?’’ he proposes the
hypothesis that the electron is held together by the
gravitational attraction it exerts on its own charge-
elements. The hypothesis derives a certain initial
plausibility from — among other things — the fact,
first pointed out by M. Abraham, that the electro-
magnetic energy of the stationary electron as given by
the Lorentz equations makes up only three-fourths of
its total energy. However, a very powerful empirical
argument would appear to make the Einstein hypo-
thesis untenable: a comparison of the gravitational
attractive forces of the electron with the electrostatic
Coulomb repulsive forces shows that their ratio

e2

km?

~ 10%° (1)

(k = gravitational constant)

is such that a counterbaldancing of the repulsive
electrostatic by the attractive gravitational forces
(cf., Kant, Anfangsgriinde ) seems out of the question.

Actually more to the point, more indicative of the
fundamental epistemological problems involved, and
at the same time not altogether without irony is the
fact that when we try to calculate the field of a particle
from the field equations of the General Theory of Rela-
tivity, modified in accordance with the Einstein hypo-
thesis, and supplemented by the equations of electron
theory, this will leave us exactly one equation short
for the determination of the unknown in the static
spherically symmetrical case. With the result, in
Einstein's own words,

that any spherically symmetrical distribution of
electricity appears capable of remaining in equili-
brium. Thus the problem of the constitution of the
elementary quanta cannot yet be solved on the im-
mediate basis of the given equations.

Riemannian Geometry

I have chosen the somewhat anachronistic presenta-
tion of the key difficulties with Maxwell’s theory in the
previous section, because this will now make it
possible to situate Riemann’s indispensable mathem-

~ atical contribution to a unified physical theory in the
most effective manner and without getting lost in
formal details. First, an important and indicative
problem with the presentation of Riemannian
geometry must be mentioned. As will become obvious
from the critique of Hermann Weyl’s interpretation of
the “Hypothesen’’ below, what in most contemporary
textbooks on differential geometry, etc. is referred to

as Riemannian geometry (Riemannian manifolds,
metrics and so on) represents a kind of false positivity
— one of several possible formal elaborations of Rie-
mann’s concept of geometry falsely pinned down as
the only one. In this formalism, Riemannian geometry
reduces to no more than the generalization of the in-
trinsic geometry of a surface with two dimensions to
an arbitrary number n. Such a reductive interpreta-
tion utterly ignores the scope of Riemann’s overall
project and misrepresents the principally epistemo-
logical purpose of the “Hypothesen,”” which were not
intended to create yet another geometrical formalism,
but to lay bare and critically investigate the hypo-
theses upon which geometry is based.

I will develop the principle aspects of Riemann’s
ideas on geometry (so far as they are explained in the
“Hypothesen’’) in the form of three compact proposi-
tions:

1. Each multiply extended quantity (multi-
dimensional manifold) is susceptible of several metric
relations: Euclidean space constitutes only a special
case of a three-dimensional manifold with a metric
determined by the Pythagorean Theorem. An n-
dimensional manifold M" is characterized by the fact
that there exists a one-to-one, continuous mapping
from M™ to a coordinate system e

{(xl,...,xi,...,xn)}

2. On the assumption that lines have a length inde-
pendent of their position, the metric relations of an n-
dimensional manifold M" are determined as follows:
to each line element ds at peM_ a number

ds=1fp (dx ,...,dx,,...,dx )
is assigned, where the functions {, are continuous and
positive homogeneous.

3. What specific functions fp are to be assigned to the
points of actual physical space, so as to distinguish it
from other conceivable three-dimensional manifolds,
is an empirical question. In general, for the purpose of
assigning metric relations to a manifold, we must
distinguish between discrete manifolds, the principle
of whose metric relations is already contained in their
concept, and continuous manifolds, where it must
come from somewhere else:

Either, therefore, the reality underlying space must
form a discrete manifold, or the basis for its metric
relations must be sought outside it, in binding forces
acting upon it. o
(“‘Hypothesen’).

I will deal with some of the mathematical details
involved in the determination of the metric functions



(proposition 2) at a later point. It is the conjunction of
propositions 1 and 3 which most emphatically shows
the extent to which Riemann’s geometry is more than
a mere generalization of Gauss’ theory of surfaces; I
will call the joint contents of these propositions Rie-
mann’s principle of relativity. Its overall significance
is most easily demonstrated by returning to the
problem of the granular structure of matter and the
Maxwell equations.

Consider again Einstein's insight — which he
wrongly regarded as simply another defeat for his
efforts of constructing a unified field theory — of the
under-determination of the field of a material particle
by the equations of electron theory and of the gravita-
tional field. If we free ourselves for a moment from its
specific mathematical-technical measuring (not
enough equations for the number of unknowns), then
the notion of underdetermination becomes im-
mediately suggestive of the crucial type of problem
involved in Einstein’s failure. I noted above the im-
possibility c¢f deriving from the Maxwell-Lorentz
theory the cohesive forces holding the electron
together. Theintroductionof gravitationalforceseffects
no basic change; underdetermination persists. I now
want to show that the reason for this lies in the sim-
plistic topology, geometry and type of continuum
assumed to characterize the physical fields under
consideration. This is brought out as soon as we shift
attention from the question of what holds particles
together and how this works to the more fundamental
~one of why particles should exist in the first place.
From the standpoint of the linear Euclidean (or
Euclidean-in-the-small) continua underlying the
Maxwell-Lorentz and the Einstein theories this ques-
tion is unanswerable. Indeed, a physical process
modeled in a continuum characterized by simple
progressive divisibility ad infinitum is not ‘‘in need
of”’ discrete existence and actually “annihilates’ (11)
it. Riemann considers this problem in the form of the
problem of measurement, and that — apart from
more general anthropological-evolutionary considera-
tions — defines the most direct access toit: In discrete
manifolds, quantitative comparison reduces to
counting, with the simplest parts functioning as
counting units. ‘

However, in continuous manifolds, there exists — by
definition — no ‘“‘natural’”’ units and any arbitrarily
internally chosen unit immediately gets destroyed
again by the process of division. Thus, Riemann

concludes that the basis for carrying out measure-.

ments in a continuous manifold must be imported into
it (imposed upon it) from the ‘‘outside.”” But he also
insists unconditionally — and this, as I will show in the
next section, distinguishes him in principle from his
later interpreters — that what has to be identified ‘“‘on
the outside’’ are certain empirically determinable
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“binding forces’’ acting upon the manifold rather than
arbitrarily a priori chosen yardsticks of whatever
description. The choice of such ‘‘yardsticks’’ indepen-
dently of the internal constitution of the manifold
would — in geometrical terms — simply amount to the
re-introduction of (Newtonian) ‘‘absolute space,”” and,
along with it, the asymmetry of the Newtonian world-
manifold in which the once and for all given metrical
structure is the source of the inertial forces but cannot
itself be effected by any kind of empirical force.

‘““The metrical structure of the world-manifold is
empirically determined,’”’ i.e., the world-metric is
determined strictly relative to the empirical contents
of the world — this is Riemann’s relativity principle.
Its discovery represents his major philosophical
accomplishment and the minimum epistemological
rigor to be applied in the solution of the problems of
measurement and of the possibility of discrete exis-
tence. This once said, let us return to the “outside,”
‘““counting,’”’ or cohesive forces. What does it mean to
say that they ‘“‘act upon’’ the manifold? Riemann fails
at this point. In his mathematical writings, he does not
pursue the problem beyond identifying the necessity
of ‘‘outside’’ forces, though in the philosophical frag-
ments (‘“‘antinomies’’) the matter is discussed further
in religious terms. The difficulty is that ‘“‘binding
forces’”” must be ‘‘outside’”’ the simply continuous
manifold as specified; this ‘‘outside’’ must still be
internal to the empirical world-manifold in its entirety
or else a contradiction to the relativity principle en-
sues.

But how can this be. Only if the world-manifold as
constituted at this point is the result of a process
which, though continuous, has gone through several
qualitatively different stages defined by different
modes of internal organization (different sets of
laws), and in which no stage n is ‘“‘linearly accessible’”’
from stage n—1. The continuity-characteristics of this
type of process are such that infinite divisibility is
replaced by unlimited self-differentiation effected
through the production of (thus necessary!) quali-
tatively new individuals. Lastly, the ‘‘outside binding
forces’’ are ‘“‘outside’” only of any given stage, but
need no longer be considered as counter-balancing by
sheer intensity the internal repulsive forces of particu-
larate matter, but, for example, through effecting
distributions of internal energies in relatively stable
geometrical configurations whose intrinsic metric
relations bear no linear relationship to the gross
metric of the external field.

Only in a linear continuum and the corresponding
affine or affinely connected (affine in the small)
manifolds is it necessary to treat material particles as
boundary-singularities of an essentially homogeneous
field and to attempt to achieve cohesion by ‘“‘brute
force.” In an essentially non-Euclidean, stratified
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continuum, the stability of discrete existence is not
absolute (determined once and for all, in one way,
from here to eternity), but a kind of meta-stability
attained in a principally force-free fashion through the
changing ways in which the historical process of the
evolution of the material universe (as a process of
field-particle interaction) determines microscopic
configurations of energy whose geometry enjoys rela-
tive stability with respect to a given stage of the
process of evolution in the large.

While not advancing to the standpoint of a non-linear
continuum, Riemann’s approach to geometry — as
opposed to that of his successors — is sufficiently
open-ended to allow for it as a possibility. In par-
ticular, he explicitly envisages what I have presented
as a consequence of the stratified continuum notion
and what is the diametrical opposite of the axiomatic
assumptions of contemporary differential geometry
— non-Euclideaness in the small:

...it is therefore quite thinkable indeed that the
measure-relations of space in the infinitely small do
not conform to the presuppositions of (Euclidean)
geometry, and this would in fact have to be assumed as
soon as, on that basis, a simpler way of explaining the
phenomenon becomes possible. The question of the
validity of the presuppositions of (Euclidean)
geometry in the infinitely small is connected with the
question of the inner reason and basis (dem innern
Grunde) of the measure-relations of space....
(Hypothesen).

Such a view will be much less surprising if we
consider the intimate connection between Riemann’s
geometrical investigations and his work on the theory
of complex- and real-valued functions. Specifically,
his function-theoretical studies certainly prevented
him from adopting the simplistic and provably false
view shared by Hermann Weyl, et al., that “‘through
recourse to the infinitely small all problems become
linearized”’ (Weyl, Raumproblem). On the contrary,
Riemann regarded it as a most important task to
investigate the conditions under which linearization
might be justifiable and to determine the degree of
distortion introduced through such a procedure. This
defines the significance of his treatise ‘“On the
Representability of a Function by a Trigonometric
Series’’ and the included dissertation on the concept of
a definite integral and the scope of its validity.

Discussing the same general problem, Felix Klein
— in his already cited 1894 Vienna lecture ~ notes that
Riemann in his later years always pointed out to his
students what he regarded as the most remarkable
result of modern analysis: the demonstration of the
existence of a continuous function which is nowhere
differentiable, i.e., of a function which stubbornly
refuses to become linear in the infinitely small at any
of its points. More broadly, the connection between

Riemann’s geometrical and function-theoretical in-
vestigations, defining the widest possible scope for his
geometry, is the following:

In his construction of a ‘““Riemannian’ manifold,
Riemann starts with a rigorous relativist conception
of space — that space is uniquely determined by the
totality of the relative positions and causal con-
nections between all physical objects and events and
represents their overall mode of organization. It is the
task of mathematical physics to investigate the
conditions of the quantitative, mathematical
representability of the functional relationships among
‘‘general extended quantities’’ obtaining in this (the
world-) manifold, and to devise appropriate concepts
for the formulation of empirical hypotheses and the
subsequent mapping out of the actual constitution of
the manifold based on subjecting these hypotheses to
““crucial’’ experiments.

A “‘Riemannian”’ manifold is precisely that kind
of concept, appropriate to the design of hypotheses by
means of which the empirical world-geometry can be
determined. Its technical definition proceeds in three
stages: first of all it is simply a collection of “‘extended
guantities’’ (or functional relations between them),
each of which is fully determined through the (num-
erical) specification of n independent attributes,
where n signifies the number of dimensions of the
manifold. Thus, for example, the points of ordinary
physical space are specified by means of determinate
values for three independent variables x,y,z, so that
the totality of these points forms a three-dimensional
manifold. Similarly, the points on a line form a one-
dimensional manifold, the possible positions of a rigid
body, which has three translational and three rota-
tional degrees of freedom, a six-dimensional mani-
fold, etc. Interestingly, Riemann also allowed for
infinite-dimensional manifolds — today’s function
spaces —, i.e.,

manifolds in which the determination of position

requires not a finite but either an infinite series or a

continuous manifold of quantitative determinations.
(Hypothesen).

In the second place, the now defined n-dimensional
manifolds of ‘“‘extended quantities’’ can be subjected
to aninvestigation in which

the quantities are regarded. not as existing in-
dependent of position or as expressible in terms of a
unit, but as regions in a manifold. Such investigations
have become a necessity for several parts of mathe-
matics, in particular, for the treatment of the many-
valued analytic functions,...

(Hypothesen).

What is discussed here, the study of the internal
relations of a manifold in abstraction from and
preceding the assignment of definite metric-relations,
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Riemann, following Leibniz, calls analysis situs:
today it bears the name of topology. Aside from the
general concepts of discreteness, continuity, and

dimension, no other topological properties of mani-

folds are dealt with in the Hypothesen, and even in his
function-theoretical works, which contain a greater
number of significant examples, Riemann does not
arrive at a precise definition of the notion of topo-
logical property, which goes beyond the above general
characterization. To my knowledge, an adequate
definition was first achieved by the German geometer
(and Gauss student) Moebius in an 1863 treatise where
he classified figures which arise from each other by
way of one-to-one, continuous transformations as
elementarily related, leading to the definition of
topological properties as invariants with respect to
such transformations. Moebius also discovered a
topological invariant of surfaces which Riemann had
failed to identify; he demonstrated the existence of
one-sided surfaces (‘‘Moebius strip’’) and showed that
no continuous function would tranform them into
ordinary two-sided ones. \

But whatever the degree of generality of Riemann’s
notion of the topological structure of a manifold, his
introduction of the distinction between topological and
metric properties and demonstration that the latter
cannot be derived uniquely from the former was a
major accomplishment. A given topological manifold
(space) could now be seen to be susceptible of several
different types of metric relations, and consequently
empirical data had to be sought to determine which of
_these was the real one. The question of the world-
metric had been removed from the realm of pure spec-
ulation and dogmatic assertion and transformed intoa
question of empirical science.
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The third stage of the definition of a Riemannian
manifold involves the identification of the conditions
and methods of the assignment of specific metric re-
lations (distance functions) between its elements.
This takes up much of Chapter II of the Hypothesen,
but the details are not important in this context; to .
some extent they will be discussed in the next section.

I have gone into this three-stage definition process
at some length, because in it the dependency of
Riemann’s geometrical conceptions upon results ob-
tained in his study of the “Foundations of a General
Theory of Functions of a Complex Quantity
(Variable)'’ is most clearly revealed.

Much as in geometry he dissociates the three-
dimensional manifold of space from its specific Eu-
clidean metric and thus gains some entirely new in-
sights into the essential attributes of the concept of
space, so three years earlier, Riemann in his doctoral
dissertation had proposed to dissociate complex func-
tion from their specific analytical expressions and in-
stead investigate the degree to which they might be
characterizable in terms of properties of their total do-

~main of definition. This procedure led directly to the"

discovery of certain crucial topological invariants of
the domain of existence of analytical functions and
simultaneously the appreciation of the outstanding
significance of the values of the function at singular
and boundary points of the domain for the deter-
mination of its general character and overall
behavior. (For example, if in a given domain a func-
tion is allowed to attain only isolated singularities of
finite order, then the function is necessarily
algebraic.) .

The discovery of the significance of the topological
properties of the domain was a direct outcome of the

B D

Moebius Strip:
a surface with only one side
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fact that from the outset Riemann considered complex
functions f(z)=f(x+iy) =w=u+iv not merely in
terms of their defining analytical expressions (poly-
nomials, etc.) but — following the lead of Gauss — as
distinctive types of mappings between the (x,y) -
plane and the (u,v) -plane. He showed that these
mappings are conformal, i.e., that they transform
infinitesimal triangles of the (x,y) -plane into infini-
tesimal triangles of the (u,v) -plane which are similar
to the given ones, and then actually turned this geo-
metrical transformation property into the guiding
conception for the further course of the investigation.
This Copernican inversion immediately showed its
fruitfulness leading to the notion of the ‘““‘Riemann sur-
face”’ of multi-valued functions and the kind of
straight-forward determination of their properties
and the properties of their integrals which previously
had posed almost insuperable difficulties. Riemann’s
procedure was simple enough: in order to extend the
correspondence between analytic functions and con-
formal maps -~ or, more pointedly, to extend the con-
“cept of analytic functions as conformal mans — to the
multi-valued case (f(z) =log z, f(z)=4/2Z, etc.) it was
necessary to conceive of the domain of these functions
in such a way that they become single-valued at every
point. This is made possible by covering the (x,y) -
plane with the required number of copies of itself
(infinitely many for log z, two for vz, etc.), connect-
ing them at the branch points (zero for both log z and
Vz yof the function, which then become the winding
points of the spiral staircase-like Riemann surface. On

Riemann Surface

(a) _ (b)

The function.\/Z has three roots for each value of z.
These three roots are considered coming from dif-
ferent parts of the z-plane by considering the z-plane to
consist of three sheets (all joined at the branch point at
the origin) that are distinct and co-planar. They are
shown separated in (a) and (b). 1,2,3 in (a) are the
sheets; the dotted lines indicate how the three sheets
are joined across the cut: the edges of the cut labeled
A and B are considered joined without interfering with
- the other surfaces.

these surfaces, all mathematical operations such
as integration, etc. can be carried out in the same way
as in the ordinary plane. More importantly for the pur-
‘poses of this discussion of Riemannian geometry, the
invariant properties of the Riemann surfaces of dif-

ferent analytic functions with respect to conformal,
or, more generally, on-to-one, continuous maps can
now be identified, and it turns out that they are uni-
qQuely topologically characterizable in terms of their
genus p — the maximum number of non-intersecting
cuts along closed curves of the surface which leave it
in one piece. In other words, we have the theorem that

- two (closed) surfaces are topologically equivalent —

related by a one-to-one, continuous transformation —

"if and only if they have the same genus. Note that p=0

defines simply connected, p>0 multiply connected
surfaces.

The maximum number of closed curves that can be
drawn on a surface, without cutting the surface intc
two separate parts, is called the order of connectivity.
For a sphere, this will be zero: for a torus there are two
curves indicated by A and B above. The genus of a
surface is defined as equal to one half the order of
connectivity (ie., the genus p equals 1 for both a torus
and a single-handled sphere).

Since the genus, in turn, bears a simple algebraic
relationship to the number of winding points of the
Riemann surface, whole sets of analytic functions can
now be classified and their course be determined in ad-
vance in terms of the topological properties of their
domains — and that is the type of result we were look-
ing for. On the one hand, global topological properties
— principally the distribution of singularities — have
a determining influence on the behavior of the func-
tion, and this is reflected in its mapping properties. On
the other hand, topology is about ‘‘the same distance
away’’ from fully prescribing the specific course of
the functions as it is from fixing the detailed metric
properties of a given manifold. The local metric re-
lations are consistent with a large variety of different
kinds of interconnectedness of the manifold as a
whole, so that, in particular, the world manifold, no
matter what its empirically determined ‘‘local
shape,’’ on the large scale might exhibit any number
of degrees of multiple connectedness. It would clearly
be Riemann’s sense that one must assume that this is
the case if it leads to a more convincing explanation of
the phenomena. -

Given that Riemann’s geometrical and his function-
theoretical efforts were developed entirely in parallel,
both motivated by his overall epistemological project
of investigating the conditions for the development of
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a unified physical (field-) theory, and both converging
upon the molding of indispensable topological con-
cepts as the basis for further research, I think that the
essential character of Riemannian geometry is best
located relative to these topological inventions — not
as defined by them, but by the investigation of the
interrelation of topological and metric structures.
Precisely the extent to which this is true defines the
open-endedness and flexibility of the theory and the
possibility of successfully reformulating it from the
standpoint of Cantor’'s Mannigfaltigkeitslehre (doc-
trine of manifolds). '

Weyl on Riemann

If it were necessary at this point to summarize our
notion of Riemannian geometry, the following, though
extremely condensed, would convey the essential
idea: Riemann, prompted by his concern for devel-
oping a unified physical theory, developed a concept of
relative space, the notion of an n-dimensional mani-
fold, whose shape is determined by the interaction of
‘““global’’ field forces with ‘“local’’ points of condensa-
tion of these forces; this process of interaction is seen
to create a more or less inhomogeneous metric field
for the manifold as a whole. A most complicated case
arises when we no longer assume even a relative in-
dependence of bodies from their position in the mani-
fold, since then ’

one can no longer draw any conclusions from the
metric relations in the large for those in the infinitely
small,...a stil! more complicated situation can occur,
when the assumed representability of a line element by
the square root of a differential expression of the
second degree does not take place.

Noting further

that the empirical concepts on which the metric deter-
minations of space are based, the concept of a solid
body and that of a light ray, apparently lose their
validity in the infinitely small,

Riemann was clearly prepared to assume that es-
pecially in the immediate neighborhood or ‘‘at”’ the
locations of particles in the field, extreme conditions
might obtain occasioning radical alterations in the
metric structure of the manifold.

The suggestive function-theoretical analogue of
such. a situation had been analyzed in detail by
Riemann in his work on multi-valued complex func-
tions, where the “‘singularities’’ (branch points, etc.)
are the points of transition between the different
sheets of the ‘‘Riemann surface’ which geometrically
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represents the function under consideration. More
broadly, Riemann’s characteristic method of in-
vestigation in all branches of physics and mathem-
atics that he touched upon, was to subject the object
under investigation to certain ‘“‘pathological’’ condi-
tions in order to form a reliable judgment on what is
essential to their behavior under ‘“‘normal’’ circum-
stances. Thus, a key section of his ‘‘Theory of Abelian
Functions’’ is entitled ‘‘Determination of a Function of
a Complex Variable by Means of Boundary and Dis-
continuity Conditions.”” Interestingly enough, this
epistemological trademark of Riemann’'s is well-

known to Hermann Weyl, who in his Space-Time-
Matter formulates it as follows:

The principle of gaining knowledge of the external
world from the behavior of its infinitesimal parts is the
mainspring of...Riemann’s geometry, and, indeed, the
mainspring of all the eminent work of Riemann, in

~ particular, that dealing with the theory of complex
functions.

Riemann did not bring his work on the mathem-
atical and empirical structure of space (or better: the
‘world-manifold) to a satisfactory conclusion. The
discreteness-continuity antinomy, the problem of the
‘“geometry”’ of field-particle interaction, Riemann’s
question about the discreteness or continuity of the
reality underlying space — these problems can only be
solved from the standpoint of a world process that

' recognizes a level of internal differentiation of the

continuum to which Riemann did not penetrate: not
one manifold, no matter what the degree of inhomo-
geneity of its metric, but a succession of nested mani-
folds, internally characterized by different relative
infinities (transfinite numbers), the transition from
one to the subsequent one mediated by “‘exceptional
individuals’’ (particle modes), defines the world
process.

Riemann himself was fully aware of the tentative
and highly incomplete nature of his geometrical and
physical-philosophical investigations. Nothing he
wrote in either field was published during his lifetime,
though the “Hypothesen’’ was delivered in 1854 as a
lecture before the Gottingen faculty. Still, his main
published works on complex function theory, his
notion of the ‘“Riemann surface’’ of an analytic func-
tion, are most suggestive of the course his geometrical
investigations could have taken; this and his method
and epistemological principles make nonsense of the
positivistic interpretation of his geometry by Weyl and
others, who take what Riemann explicitly presented
as only one — though admittedly the only one he
elaborated somewhat — example and application of
his geometrical method for the entirety of his
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geometry. Historically, this cut off any further fruitful
development of differential geometry and turned it
into a stale mathematical discipline; presently, the
hegemonic, fundamentally ‘‘affine’’ conception of
Riemannian geometry is symptomatic of the general
methodological inadequacies that have prevented the
extension of the general theory of relativity beyond
the scope of a theory for the gravitational field.

Weyl alone cannot be saddled with the affine inter-
pretation of the ‘‘Hypothesen.’’ Christoffel, and then
especially the Italian school of Ricci and Levi-Civita,
did the necessary preparatory work. However, it is
through Wey! and his application of the interpretation
to the ‘‘problem of space’ — the problem of singling
out from a variety of world-metric types a unique one
satisfying certain analytical conditions which in turn
correspond to empirical relations of the world mani-
fold — that the affine conception came to dominate
discussions of the application of Riemannian
geometry to theoretical physics.

In the appendix to his 1919 new edition of Riemann’s
“Hypothesen,’”’ Weyl formulates his standpoint as
follows: ‘

It will furthermore be natural to assume that the dif-
ferent points of the manifold do not already differ with
respect to the measure relations obtaining in each of
them; analytically, this is expressed by the fact that
the functions f, corresponding to the points p all arise
from one function f by way of linear transformation of
the variables. This is the case when f is a positive-
definite quadratic form at each point:

M= (dx)2 +...+(dx)? +...+(dx )

however, it is in general not the case when f is the
fourth root of a form of the fourth degree with coef-
ficients varying from point to point.

Distance functions of the type (I) express the validity
of the Pythagorean Theorem (‘‘Euclidean-ness’) in
the infinitely small. Weyl proposes to solve the
‘““problem of space” by establishing certain simple
internal properties of spaces with a Pythagorean
metric which distinguish them from all others and
recommends that they alone be considered for em-
pirical applications. This is done both in general
physical-epistemological terms and in terms of
detailed mathematical execution in the 1923
mathematische Analyse des Raumproblems
(Mathematical Analysis of the Problem of Space).
There three general arguments are advanced in favor
of the exclusive characterization of the metric field by
“means of a quadratic differential form

dst =g dx'dx*

" 1. The effectiveness of near-action physics and Rie-
mannian geometry is based on the principle of deter-
mining the form and contents of the physical world
through an understanding of its behavior in the in-
finitely small. Such an understanding in turn is made
possible by the fact that through the recourse to the
infinitely small, all problems become linearized. (The
emphasis is Weyl's.)

2. Commenting on Riemann’s entertaining of the
possibility that ds might be given as the fourth root of
a homogeneous polynomial of the fourth degree, the
sixth root of a rational form of the sixth degree, etc.,
Weyl writes: o

It seems to me that the higher cases adduced by
Riemann for the purpose of comparison are con-
structed in accordance with an overly formal princi-
ple. Surely one must require at least the nature of the
metric to be the same at every point of space.

3. The real, four-dimensional world is an example of -
an affinely connected manifold. A body released in a
definite world-direction carries out a uniquely deter-
mined natural motion from which it can only be
deflected through external forces. The mathematical
theorem that accompanies and elaborates these points
is the following:

The metric field of a given manifold. M uniquely
determines the affine connection of M if and only if at
each point of M the metric field is characterized by a
non-degenerate quadratic differential form

gikdxidxk,

i.e., is of a Pythagorean nature.

There is no reason to doubt the mathematical
cogency of this proposition. However, it is precisely
the fact that Pythagorean-type metrics uniquely deter-
mine the affine connection of the manifold they
characterize which speaks against the exclusive adop-
tion of such Pythagorean structures. To explain this it
will be necessary to take a look at Weyl's proof and to
some extent at least “‘unpack’ the contents of his

~ theorem through a series of definitions of key con-

cepts.

1. The operation of parallel displacement is funda-
mental to both finite and infinitesimal affine
geometry. In the Euclidean plane, for two points p and
p, and a vector v at p there exists a unique vector v, at
p, parallel to and of the same length as v. The
Euclidean notion of parailelism can be extended to
arbitrary sufaces S:



Let p and p, be in S, u a (unit) tangent vector at p,
and T and T, the tangent planes atp and p,. If S is
developable (of the same intrinsic geometry as the
plane), thenu,at p,is called parallel to u with respect to
S, if it is parallel to u in the ordinary sense after S has
been developed onto the plane. If S is not developable,
then parallel displacement has to be defined by way of

4]

a curve ¢ connecting p and p,: Consider the set of all
tangent planes to S at points along ¢ and their lines of
intersection: the surface formed by the totality of
these lines is called the envelope of S along ¢, and is
clearly a developable surface S.. Now, u,at p,is said to
be parallel to u along ¢ on S if it is parallel to u with
respect to S..

B p
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Consider two v_ctors on the surface S of a cone and with
respect to a coordinate patch (A). Since the surface of a
cone is a developable surface, it {(and the coordinate
patch) can be lald flat onto a plane without stretching (B).
The two vectors are then defined to be paralle/ with
respect to the conic surface if they are parallel to the

plane.

~
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One consequence of defining parallel transfer in this
way is that at point p, ,there is in general no unigue
vector that is paraliel to a given vector at p with both vec-
tors tangent to the surface S at their respective points.
This can be seen here, with two curves, ¢ and ¢”,
connecting p and p on-a sphere. Curve ¢ is along longi-
tudes and S ¢ can be developed into a straight line: ¢ is
along a tatitude and S’ can be developed into an arc of

acircle.

Finally, the infinitesimal parallel displacement of
vectors in arbitrary n-dimensional manifolds must be
defined. Infinitesimal displacement is the geometrical
basis of the tensor calculus and was initially intro-
duced in a 1917 paper by Levi-Civita in connection with
the embedding of an n-dim‘ensional Riemannian mani-
fold (i.e., a manifold whose metric is given by the
form

- loilok
ds? = B d_x'dx )
in a Euclidean space of

n (n+l)
2

dimensions (where

n(n+1)
2

corresponds to the number of the tensor components
€. )- The concept arises straightforwardly by way of

first generalizing the notion of finite displacements on
two-dimensional surfaces to the n-dimensional .case,

and then restricting the displacement operation to
points in an infinitely small neighborhood of a given
point p.

Independently of the embedding of the manifold in
Euclidean space, an infinitesimal parallel displace-
ment of the vector v at p to an infinitely near
point p, can, in analogy to finite affine geometry
where parallel displacements of a vector leave its
components unchanged, be characterized analytically
as an infinitesimal translation, for which there exists
a coordinate system (for the immediate neighborhood
of p) in which the components of v remain unaltered
by the translation. In an arbitrary coordinate system
X., the change of the vector components ! brought

about by infinitesimal parallel displacements is given
by

(I dgi = -l dx®¢".

Here the quantities I‘f_s , called the Christoffel sym-

bols, which determiné the displacement process,

depend only on the coordinates and satisfy the sym-
metry relation .

an r = r,



Conversely, if the quantities F:s satisfy (II) and a

translation of the vector field at p to points in the in-
finitesimal neighborbood of p is defined by (I), then
there exists a coordinate system in which the infini-
tesimal translation so defined leaves the vector
components unchanged. Weyl calls this ‘“ a possible
systermn of infinitesimal parallel displacements.” If a
manifold is such.that at each of its points p among all
possible systems of parallel displacements of the
vector field to points in the immediate neighborhood of
p one a.'ﬁd'gnly'one can be singled out as ‘‘real,” then

the manifold is said to be affinely connected (or
* provided with an affine connection), and the I'!  are
called the components of the affine connection.

Remark on Affine Spaces

Elementary (metric) geometry studies those
properties of geometrical figures and relations which
remain unchanged (invariant) under congruence
transformations (parallel displacements, rotations),
i.e., motions to which a rigid body can be subjected
‘without changing its shape. Affine geometry is the
theory of invariants of the considerably larger group
of affine or whole linear transformations

r
x =a,x+by+ez+d
y =a,x+b,y+e,z+d,
|
z =a,x+b,y+tcz+d,,

among which the congruence transformations are
contained as special cases. Thus certain elementary
geometrical properties and relations of objects (such
as shapes, angles, distances) will not be invariant

under permissible coordinate transformations in

affine spaces. However, the distinction between finite
and infinitely distant points of space remains intact
and along with it all those concepts that depend upon
that distinction: the parallelism of straight lines, the
classification of conic sections into ellipses, para-
bolas, and hyperbolas, etc.

‘“Affinities’”’ are actually best interpreted as pure
homogeneous deformations or as simultaneous linear
expansions (contractions) of a given space in the
mutually orthogonal directions of its coordinates.
"Examples?

1. The Galileo-Newton transformations, expressing
the equivalence of any two inertial frames (coordinate
systems) and the invariance of the laws of Newtonian
mechanics with respect to them, are atfine trans-

formations. Thus the space of Newtonian physics is a

four-dimensional affine space, in which the velocity of
a body in uniform motion is not of, whereas the force

43

(represented by a vector) with which one body acts
upon another is of the required invariant significance.

2. The transformations employed by Marx in the last
chapter of Volume II of Capital in the diagrams ia-
tended to explicate the process of expanded reproduc-
tion are affine transformations. This signifies Marx’s
failure to fully conceptualize the expanded reproduc-
tion process: only expanded simple reproduction, i.e.,
linear expansion within a given mode of technology, is
susceptible to affine treatment. If the space of ex-
panded reproduction proper were an affine space,
then, in accordance with Marx’s discussion, we would
arrive at the conclusion that productivity of labor (or
certain linear productivity increases) is an invariant
of the expanded reproduction process, whereas the
opposite (i.e., non-linear increases occasioned by the
introduction of qualitatively new technologies) is the
case. This was first pointed out by Rosa Luxemburg in
Chapter XXV of the Accumulation of Capital.

Affinely connected manifolds, as just defined above,
can now simply be characterized as manifolds in
which all the properties of affine spaces are explained
and valid not globally, but only for an infinitesimal
neighborhood of each of its points p.

By means of what intrinsic properties can the af-
finely connected manifolds be distinguished among
arbitrary continuous n-dimensional manifolds, or,
equivalently, what allows us to single out a unique
system of parallel displacements among all possible
ones at a given point of the manifold p?

This is the subject of what is sometimes called the
Fundamental Lemma of Riemannian Geometry
(which is identical to the if-condition of the above-
stated basic theorem establishing the connection
between affinely connected manifolds and manifolds
with a Pythagorean-type metric) ; the lemma reads:

On an n-dimensional manifold whose metric is given
by the fundamental quadratic form € dxidxk there

exists for each of its points p a unique system of
parallel displacements of the vector field at p to points
in the infinitesimal neighborhood of p which leaves the
lengths of all the vectors unchanged, i.e., for which

. d(giksigk) = 0.

This is a most important result, because it allows us to
ask a question about the real world an unambiguous
answer to which would apparently determine once and
for all the nature of the metric of the world-manifold:
Does there exist for every world-point p and for a
given test-body at p a unique world-direction which
determines its motion? The simplicity of the question
is deceptive and the seemingly obvious ‘‘yes’’-answer
looses its obviousness as soon as we begin to make the
first inquiries about the nature of the test-body and of
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the direction-determining ‘‘guidance field” under
consideration. Is it true for an electron at a given
place and time? According to Heisenberg (uncertain-
ty) the very question is nonsensical. I contend that in
order to coherently pose the above type of question, a
unified physical theory of the world manifold would
have to be available to us, but that the elaboration of
such a theory could not conceivably involve a
characterization of the world metric in terms of infini-
tesimal parallel displacements because this would
imply a violation of the principle of relativity. To see
this, the condition of the existence of unique systems
of parallel displacements (or, as this is also ex-
pressed, unique affine connections compatible with
the metric structure) must be investigated in greater
depth. A good handle for doing this is provided in
Weyl’'s proof of the converse of the fundamental
lemma (the only if-condition of the “Raumproblem’’-
theorem), which for convenient reference shall now be
briefly restated:

Let f be a metric function defined on an n-
dimensional manifold and such that at each point of the
manifold f determines a unique system of congruent
infinitesimal parallel displacements. Then f *is a non-
degenerate quadratic differential form.

Weyl’s proof proceeds from the notion that the
metrical constitution of a manifold at a point p is
known, if among the linear transformations of the
vector field with the fixed point p (rotations) we can
single out the congruent ones. This had been the
leading idea of Helmholtz’'s 1868 paper ‘““The Facts
upon which Geometry is Based,’”’ in which he showed
that ‘‘Riemannian spaces’’ (defined as spaces whose
~ metric is given by a positive-definite quadratic form
g‘ikdx'dxk) can be uniquely characterized by the
postulate of the free mobility of sufficiently small
rigid bodies, or, more precisely, by the requirement
that an infinitesimal body containing p can be freely
rotated about p without undergoing deformation.

Helmbholtz further demonstrated that if we demand
the free mobility of arbitrary finite bodies, then the
space in question must, in addition, be of constant
Riemannian curvature. Formulated in terms of the
theory of transformation groups, Helmholtz’s prin-
cipal result states that the group of homogeneous
linear transformations of the differentials (line ele-
ments) dx' at p determined by the infinitesimal free
mobility condition consists exactly of all those linear
transformations which leave the form gikdx‘dxk
invariant. Similarly, though in considerably more
general fashion, Weyl proves that an infinitesimal
rotation group of the vector field at p satisfying
analytical conditions that depend upon the degrees of
freedom of the vector field and otherwise directly

translate into group-theoretical language the unique
determination of the affine connection by the metric
field, .comprises the entirety of infinitesimal linear
transformations which transform a given non-degen-
erate quadratic form into itself.

Helmholtz was led to his theorems singling out
“Riemannian spaces’’ among more general metric
spaces, and spaces of constant curvature among the
general “‘Riemannian’ ones by what he regarded as
indubitable facts concerning rigid bodies and
processes of physical measurement. We carry out
measurements, he argued, by moving calibrated
measuring rods from one place in physical space to
another. These measuring rods are three-dimensional
rigid bodies, and unless they can be moved from here
to there without undergoing changes in shape and size,
all measurement is impossible. Free mobility of finite
rigid bodies is a presupposition of physical measure-
ment, and therefore the world-manifold is a “Rie-
mannian’’ space of constant curvature.

Well, Helmholtz was proved wrong by Einstein and
the general critique and re-evaluation of the concept
of rigid body brought about by relativity theory. The
kind of measurement Helmholtz regarded as the only
possible one turns out to be possible only under special
conditions; the General Theory of Relativity gives up
finite free mobility and asserts it only for the infinitely
small. This may or may not be the correct view, but —
as Riemann, Heimholtz, and Einstein would all agree
— whether or not it is is an empirical question. Not so
for Weyl, — and this fact is the first important
epistemological conclusion from his proposed solution
to the “Raumproblem.’”” He himself is quite open
about the dogmatic implications of his theorem: “it is
a matter,” he says, ‘‘of rationally comprehending the
one immutable Pythagorean nature of the metric, in
which the a priori (my emphasis) essence (Wesen) of
space manifests itself.”” And elsewhere, commenting
on the distinction between his and the Euclidean point
of view: ‘

That there is something a priori about the structure
of the extensive medium of the exterior world is, there-
fore, not denied in principle; only the borderline bet-
ween the a priori and the a posteriori is moved to a
different place.

Weyl knows that to be consistent with Einstein’s
empirical discoveries, geometry cannot maintain the
a priori metric homogeneity of space; however he
clings to the a priori homogeneity of the nature of the
metric — because otherwise ‘‘everything would be
possible’’ ?

We get a more definite sense of the implications of
Weyl’s apriorism by focusing on the general equiva-



lence of his and Helmholtz’s characterizations of
metric spaces equipped with quadratic forms.
Keeping in mind Helmhoitz’s concern about the
possibility of measurement, to assume the necessity of
~ the affineness of space in-the infinitely small is simply
to hold on to a last vestige of the ‘‘absoluteness’ of
space in the Newtonian sense; to import extraneous
yardsticks — though infinitely small ones — for the
purpose of quantitative determination of the world-
manifold. This, however, is clearly antithetical to a
rigorous interpretation of the principle of relativity,
which demands that measurement be strictly based
on the internal relations of substance and no aspect
(moment) of the physical process be accorded in-
variant significance, which depends for its deter-
mination upon the introduction of ‘‘absolutist’’ (.e.,
essentially subjectivist) assumptions. The reasons
why Weyl felt it necessary to make a priori assump-
tions (as opposed to forming empirical hypotheses)
about the structure of the world-manifold are straight-
forward. : .
The introduction of such assumptions (comparable
to the Kantian categories) must appear as a condition
of the very knowability of the universe — though it

makes knowledge partial in the dual sense of that -
term — to anyone who is not in possession of a concep-

tion of the physical universe as a process of suc-
cessive qualitative self-differentiation of which
we ourselves (including the progressive perfection

of our knowledge) are an integral part. Such a con-*

ception of progress through qualitatively dtstinct
stages (both in the ontological and the epistemological
sense), in which the necessity of reaching the next
higher stage determines the adequacy — and thus is
the sole permissible basis for the measurement — of
processes in the here and now, is indispensable if a
radical application of the principle of relativity and
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the coherent radically empirical outlook, which
tolerates no dogmatic premises, are to be possible.

The assumption that the world-manifold is neces-
sarily affinely connected is not only an intolerable
apriorism, it also is responsible for the status of
discrete existences (particles) as Kantian-type
‘““things-in-themselives’’ and the consequent severing
of the microscopic from the macroscopic physical
realm; as follows:

In an affinely connected manifold the parallel

displacements defined by the I“is (the components of

the affine connection) induce linear maps between the
tangent spaces at different points of the manifold and,
hence, linear functional relationships between the
lengths of the line elements at any two points. In this
situation there is no room for non-linear displace-
ments anywhere, and if the unified physical field is
such a linearly connected manifold permitting only
linearly related variations in field intensities from one
place to the next, then discrete existences necessarily
acquire the status of ‘‘uncontrollable’” intensities
(unchecked by cohesive forces) or of unremovable
singularities, which ‘‘disinterestedly’’ coexist with the
field without being knowable from its standpoint, i.e.,
as ‘‘in-themselves’’-existences. This, of course, is
precisely the situation in theoretical physics today.

To avoid these difficulties, neither field nor particles
can be taken as primary, but only the process of their
continuous interaction. Then the topology and the
“local”’ and large-scale metrical structure of the
process must be mapped out — not as determined by
an aprioristic epistemology but by the internal neces-
sity of the progressive evolution of the process. This
requires the introduction of Cantor’s transfinite
numbers and of the concept of a ‘‘non-linear’” con-
tinuum.
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4. Cantor: The Theory of the Transfinite

Prelude: Cantor as a student of
Riemann and Weierstrass

I shall look at Cantor from the stémdpoint of the

necessary further development of Riemann’s project
as defined in the previous section. In particular,
Cantor’s transfinite numbers can be viewed as a
further elaboration of Riemann’s distinction between
discrete and continous manifolds, defining internal
differentiation and distinct determinate infinities
within the continuum itself. This yields the conception
of not one, but of an ordered, continuous succession of
manifolds — precisely the notion needed to apply the
fundamental concept of Marxian economics, ex-
panded reproduction, to the physical universe as a
whole. he

Cantor’'s mathematical discoveries, aside from
their basis in his philosophical concerns, resulted
from the convergence of two separate principle lines
of investigation, both of Riemannian origin:

First — though this is not the chronological order of
these developments — Cantor directly connects up
with Riemann’s work on n-dimensional manifolds in
an 1878 paper entitled A Contribution to the Theory of
Manifolds. This paper directly references Riemann’s

““Hypothesen’’ as well as Helmholtz’' 1868 piece “The
Facts Upon Which Geometry is Based.”’ Cantor here
discusses the concept of a continuous manifold and
makes the discovery that in principle n-dimensional
manifolds can be collapsed into manifolds of one
dimension, so that dimensionality itself cannot be
viewed as a way of developing a notion of higher or-
ders of infinities. The theorem Cantor proves is the
following:

The elements of an n-dimensional manifold
can be uniquely and completely determined by
just one, continuous coordinate t, i.e. there
exists a one-to-one correspondence between the
elements of a continuous n -dimensional mani-
fold and a continuous one-dimensional manifold
(such as an arbitrary segment of the real line).

Or to restate this in terms of the concept of the
power of a manifold or an aggregate, which is first
developed in the introduction of this 1878 paper, the
power of an n-dimensional continuous manifold is the
same as that of a one-dimensional one. His ability to
prove this theorem came as the greatest surprise to
Cantor himself. He actually decided to communicate
this proof to his colleague Dedekind before submitting
it for publication, commenting in the Dedekind letter,
““Je le vois, mais je ne le crois pas.’’ The reason is only

too obvious. Historically, Cantor had actually in the
preceding three years made every attempt to prove
the opposite — that is to show that no such one-to-one
correspondence between manifolds of different dimen-
sions was possible. ,

He was prompted to make this investigation by an
earlier 1874 discovery in which we can locate at least
one important strand of his development of the theory
of aggregates in general and of different powers of the
infinite in particular. In this 1874 paper, On a
Property of the Totality of All Real Algebraic Num-
bers, he had succeeded in proving that there exists no
one-to-one correspondence between the natural
numbers sequence, the numbers one, two, three, four,
etc., and the entirety of the real numbers, the numbers
encompassing the natural numbers, the rationals and .
the irrationals. We can surmise that he then at-
tempted to find higher-order infinities by advancing to
higher dimensions — by advancing from the real line
to the plane to three dimensional spaces, etc. Now the
1878 paper demonstrated that this was impossible. The
necessary conclusion to be drawn from this was that it
was only through a much more thorough and careful

study of the properties of the one-dimensional con-

tinuum that progress might be made towards an
understanding of the possibility of higher-order infini-
ties.

We find the second major root of Cantor’s theory of
transfinite numbers in his work on certain key
features of Fourier Analysis. Fourier’s work of sub-
jecting the so-called arbitrary functions to analytical
treatment was, as we pointed out above, one of the
most fruitful ways of making progress — not just with

| the integration of certain partial differential equations

which without his method would have been impossible
to handle, but also with the discovery of the funda-
mental topological properties of the manifold under-
lying functional relationships and determining their
character. Thus, Fourier, faced with the problem of
considering the permissible degrees of ‘misrepre-
sentation’’ of arbitrary functions through trigono-
metric series, actually had to come to grips with the
most general concept of a function. And it was this
same general line of investigation which in subsequent
decades was carried on successfully by Dirichlet in his
1829 paper, ‘““On the Convergence of Trigonometric
Series Representations of Arbitrary Functions’’ and in
the work of Dirichlet’s student Bernhard Riemann.
Cantor’s work on Fourier Analysis began amost

- immediately after he received his PhD. at the Univer-

sity of Berlin and came to Halle-Wittenberg in 1869.
His publications on the uniqueness of trigonometric



series representations of real valued functlons f(x)
fall into the 1870-1872 period.

The principle theorem involved is the following:
Theorem: Two trigonometric series

Yabo+ ) (
) b;, +Z (;l'"

coincide in their coefficients even if for an infinite
number of values of X of the interval (0...27) the
series fail to converge. In his attempt to determine the
precise size of the so-called exceptional, in this case,
infinite sets of values where convergence of the series
is permitted to fail, Cantor introduced his concept of
the derived point set, a generalization of which
straightforwardly led to the introduction of his trans-
finite ordinal numbers. In fact, the transfinite ordinals
technically are nothing more than the indices of these
derived sets. The details of this are well developed in
Philip E.B. Jourdain’s introduction to Cantor’s 1895
Contributions To The Founding of The Theory of
Transfinite Numbers. That Cantor himself actually
began to understand the more far reaching signifi-
cance of this notion of a derived set at that early point,
that out of it the concept of a transfinite ordinal could
be developed, was something which, according to his
_own testimony, he already saw in the 1870-1871 period.
This general line of investigation which, directly in
the mathematical-technical sense, leads to the
discovery of the transfinite ordinals is the same line
first pursued by Fourier and then by Riemann in his
1854 piece ‘‘On the Representability of a Function by
Means of a Trigonometric Series.” This Riemann
essay written contemporaneously with the ‘“Hypo-
thesen”’ contains a short compact chapter on
the theory of the “Riemann Integral.”” Here Riemann,
prompted by his investigation of the conditions under
which a function is Fourier representable, found it
necessary to investigate, in more general terms, the
necessary and sufficient conditions of the integrability
of an arbitrary function, and, specifically, to try to
find an estimate on the tolerable number of discontin-
uities of such a function in a given interval. It is
necessary to reiterate that it is precisely investi-
gations of this kind which gave us the most detailed
insight and most comprehensive understanding of the
character of the continuum. Therefore, it should not
really be that surprising that it is precisely investiga-
tions of this kind which despite their seemingly limited
technical-mathematical character play a major
contributing role in the development of Cantor’s
theories which, of course, had the broadest possible
epistemological impact.

a_ sin nx +b_ cos nx) and

sin nx + bl: cos nx) -

47

Now specifically for Cantor’s intellectual develop-
ment. It will be necessary to establish here that while
Fourier, Dirichlet and Riemann and, to a certain
extent, Gauss as well made contributions of major
significance to the study of the topological structure of
the continuum, the most general and far-reaching
investigations, though focused much more specifically

-in the context of the theory of complex value functions,

are due to Kar! Weierstrass. Weierstrass came to
Berlin after an unspectacular career at various small
Catholic High Schools in the year 1859, when he was
already in his 40s. Cantor was a student of Weier-
strass’ for four years (from 1863 through 1867 with a
brief interruption when he spent the summer of 1866 in
Gottingen). The principle features of Weierstrass’
mathematical theories are best summarized by
focusing on his method — the almost proverbial
Weierstrassian rigor ( Weierstrass’sche Strenge). He
pushed to the extreme the method of subjecting func-
tional relationships to ‘‘pathological’’ situations in
order to determine their principle characteristics. The
purpose was to attain the most precise demarcation of
concepts which previously had not been established in
their exact meaning. Thus, for example, it was .
generally assumed that continuous functions would
also be differentiable at every point, precisely
because of the apparently implied smoothness of a
continuous function. Weierstrass utterly destroyed
this belief by actually exhibiting, to the great surprise
of all his contemporaries, a function which is con-
tinuous but not differentiable at any point. The con-
ceptual demarcation between continuity and differ-
entiability on the basis of the inspection of this
example then became clearly understood.(see next pg.

More broadly, his investigations and the construc-
tion of such pathological examples allowed him to
make the greatest amount of progress with regard to
the determination of the topological characteristics of
a manifold which must be presupposed in order for
certain mathematical qualities to be exhibited by
functions within that manifold. Here it was
specifically his investigations of a variety of so-called
existence theorems which were of the greatest value. A
case in point is his discussion of the “Dirichlet Prin-
ciple,”” a method of deduction borrowed from the
calculus of variations by means of which the unique
existence of solutions to certain boundary value
problems in the theory of partial differential equations
is established. Riemann time and again availed
himself of this method in his theory of Abelian func-
tions. The sxmplest form for the problem under con-
sideration is the following:

Consider a set of boundary values to be given by a
function U(y') where ¥ is the angle and the values
U(¥) are continuously distributed over the boundary
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of a circular disc. Then we want to prove the following
existence theorem: that in the interior of the disc
there exists one-and-only-one continuous function u
which is continuous with the given boundary values
and satisfies the equation

_2%u  2%u _
dx?2 0y?

Au 0.

Presumably on the basis of the calculus of variations
it can now be established that such a unique function u
exists as the lower limit of the value of a double in-
tegral extending over the entire disc.

In 1869, Weierstrass published his conclusive refuta-
tion of this method of argument by means of the
following type of example: Assume that among all
continuously curved curves between A and B passing
through C we want to determine the one whose length
is a minimum. The lower limit of all possible curves
that must be considered in this case, is given by the
straight lines AC and BC which, however, at C no
longer fit together in a continuously curved fashion.
Thus, the apparent lower limit does not belong among
the functions that could be considered a solution.

What is of importance here is not the disproof of the
Dirichlet Principle and the apparent, at the time,
invalidation of much of Riemann’s work on algebraic
functions, but rather the method by which Weierstrass
accomplished this. Parenthetically, it should be
mentioned that Hilbert at a later point established that
if the proper restrictions are placed upon the cases
considered by Riemann, the restricted Dirichlet
Principle is entirely valid and none of Riemann’s
results become false. In any case, it is Weierstrass’
method which is at issue. Here, as well as in the more
celebrated case of his critique of Cauchy’s definition
of irrational numbers, Weierstrass establishes the
necessity for a constructive definition of mathem-
atical concepts, thus focusing his attention on the
process that establishes a concept, rather than on the
result of that process. Previous to Weierstrass,
these methods of construction had remained almost
entirely obscure and existence theorems of the rele-
vant kind, for example, had generally to be estab-
lished by way of recourse to physical and geometrical
“plausibility.”” Cauchy defined the irrational numbers
as follows: ‘“‘An irrational number is the limit of the
various fractions which furnish more and more appro-
priate values forit.”

As Weierstrass points out, this definition pre-
supposes the existence of such limits and, as such, is a
circular definition because the concept of limit\, in
turn, presupposes the antecedent definition of irra-
tional numbers. Inthe Grundlagen Cantor remarks
that Weierstrass was probably the first to avoid this
logical error in his own construction. He defined the
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new irrational numbers strictly as specifiable aggre-
gates of numbers (rationals, in this case) which had
been previously defined. And he gives a specification
of precisely how such aggregates are to be construct-
ed.

- Weierstrass’ method, however, culminates in his
rigorous application of ‘“‘nesting processes’’ which
were first used by Bernhard Bolzano in 1817. The
important point is that through the use of these nesting
procedures, arithmethic construction processes can
be found which allow us to eliminate loose assump-
tions concerning the existence of limits, ete. and
thereby give us a much greater insight into the con-
tents of the limit concept itself. Aside from the defini-
tion of the irrationals, Weierstrass applied a nesting
process in his proof of the ‘“Bolzano-Weierstrass”
theorem, one of the most fundamental theorems in
general topology, which establishes the existence of
“points of condensation’’ in every closed interval of
the real line. Interestingly, Cantor’s derived point sets
actually are, for any given set, the sets of points of
condensation or limit points of that set. Beyond the
Bolzano-Weierstrass theorem, Weierstrass then ac-
tually went on to discover and develop much of what is
now known as point set topology and certainly most of
what is needed as a basis in topology for function-
theoretical investigations. Clearly, Cantor’s method of

. defining transfinite ordinals owes a great deal to

Weierstrass’ procedures. Cantor draws the relevant
parallel between transfinite ordinals and irrational
numbers in an 1884 letter:

The transfinite numbers are, in a sense, new
irrationalities and, indeed, in my eyes, the best method
of defining finite irrational numbers is the same in
principle as my method of introducing transfinite
numbers. We can say that the transfinite numbers
‘stand or fail with finite irrational numbers; in their
inmost being they are alike, for both are definitely
marked-off modifications of the actually infinite.

While Weierstrass’ method and influence were a
major contributing factor to Cantor’s development,
we should add here at least one word of caution.
Weierstrass, as opposed to Riemann, had ogly a most
tentative relationship to physics and consequently the
scope of his investigations was hemmed-in from two
sides — the side of physics and that of epistemology —
because it is precisely through its contribution to the
problems that arise in physics that mathematics
develops or makes significant contributions to the
development of broader epistemological problems.
While indeed Cantor was more of a student of Weier-
strass’ than of Riemann’s and while this left its posi-
tive mark on his work, it also, in a sense, became his
downfall later on when in his own investigations he
began to focus more and more on the formal struc-
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tural aspects of his theory and away from the broadest
philosophical implications of his 1870-1884 discoveries.

The Sequence of Omegas

We begin the discussion of Cantor’s own theory of
infinite aggregates, as developed principally in the
1883 Grundlagen with a brief exposition of the formal
aspects in the process of the definition of the trans-
finite ordinals. In a sense we can think of them from
the standpoint of asking ourselves the question of how

one would extend the process of counting beyond the

finite numbers one, two, three, four, etc., and what
principles of the counting process one would have to
adduce in order to understand how its extension
beyond the realm of finite sets is possible. According

to his own testimony, this was Cantor’s own way of

thinking about his new numbers. While they could not
possibly have the same characteristics in every
- respect as the finite numbers, there was in all cases
the need for adducing a new and sufficiently general
- concept whose comprehension would be large enough
so as to encompass both the realm of the finite and of
the infinite. ‘

What is essential to the counting process is the
following: it is first and foremost a process of ordering
— a process by means of which the different elements
of a given set are put, if you will, next to each other,
placed one before the other, the other behind the one,
so that we can then use that ordering and the process
of counting can commence. Clearly, if we think of
counting as principally ordering or based on ordering
in this sense, then the initial difficulty of conceiving of
a process of counting when there is no longer a clearly
defined sequence, as in the case of the natural num-
bers, tends.to disappear. Cantor believed that he coujd
actually prove that every set, no matter what its size,
could be ‘““well ordered.”” This well-ordering theorem,
which in contemporary axiomatic set theory is seen to

‘be the equivalent of the so-called axiom of choice,

would then be a sufficient basis for the extension into
the trans -finite of the counting process.

Specifically, the transfinite series of the o’s is
constructed in accordance with what Cantor calls two
principles of generation, two constructive principles,
and one limiting principle which imposes certain
restrictions upon the otherwise untamed process of
contruction as defined by the two generation princi-
ples. The first of these principles is familiar to every-
one. It is simply the instruction: ‘““add one’’; the very
way in which we proceed in the process of counting in
the realm of the finite. Now consider the set of all such
numbers which have been generated by means of the
first principle of generation. This set does not contain
a greatest number. We can however imagine a new

number o which precisely references the specific
order of succession in which the first set, ‘“‘the first
number-class,’’ has been formed.

The first infinite ordinal number » references the
order type of the set of all numbers preceeding it, but
is not itself a member of that set. Once o is given we
can again apply the first principle of generation to
form new numbers o+ 1, w+2,.. etc: Again we will be
in a position of not arriving at a greatest number in
this sequence. But, as in the case of w, another
number 2w can be formed to reference the set of all
numbersw 41, o +2, ... etc. which preceed it.

Now let us try to adduce the general principle on the
basis of whichw , 2w, etc. have been constructed. This
principle is clearly different from the first generation
principle. What Cantor calls the second generation
principle is spelled out with precision as follows: If we
are given a set of integers in any definite succession
such that there exists no greatest number in this set,
then on the basis of the second principle of generation
a new number is formed which is defined as the next

greaternumber to all the preceeding ones.

The significant new element introduced by Cantor at
this point consists of using the concept of power, which
he had developed in the above quoted 1878 piece, and
which now comes to intersect with the ordering and
counting process defined by the two generation
principles. This gives rise to the limiting principle
which decrees, in the specific case in our construction
of infinite numbers that we have reached at this point,
that all the numbers of the second number class,
numbers such as », w+1, 2w, etc. can only be of the
power of the entirety of the set which they are coun-
ting, in this case the power of the first number class.
This limits the otherwise absolutely infinite
progression of integers and introduces steps into their -
continuous succession, so that we obtain natural seg-
ments, which Cantor calls number classes, in the

progression of the entire sequence of the transfinite
numbers.

It is an easy matter to prove that indeed the number
classes I, II, III, etc. so formed follow each other in
order of power, in such a way that the power of the

- second number-class is in fact the next higher power
" to the first and so on and so forth. The proof of this is

straight forward and Cantor provides it in the
Grundlagen. We will not, at this point, enter into
Cantor’s technical development. Rather, we will make
the transition to the discussion of its epistemological
import, after a brief accounting to ourselves of the
new and most powerful analytical tools that are now in
our possession in the form of the sequence of the trans-
finite ordinals.

With the o ’'s themselves, we have before us a
sequence of relative infinities definitely related to a



specific process of construction or generation. The
entire sequence of these relative infinities in turn is
“packaged’’ in such a way that we gain a succession of
number-classes of increasing power. The word
‘f power’’ can be interpreted, given that we know what
is on the inside, if you will, of a given number-class,
not only from the standpoint of what in ¢contemporary
set theory is called the cardinality of the relevant sets,
i.e., their size, but actually from the standpoint of the
increasing internal differentiation of these infinite
sets. In this sense, the: N’s, that is the names of the
“number-classes referencing definite powers, not only
express concepts of undifferentiated size, but, through
the way in which the concept of power is merged with
the ordering process, increasing powers actually
mean increasing orders of internal differentiation.

The relevant ‘‘absolute’’ in all of this is none of these
aggregates ofewerdinal numbers as such, nor some
putative ordinal referencing the set of all ordinals.
Cantor has pointed out, in advance of the well-known
statement to this effect by Burali-Forti, that the
concept of a set of all ordinals to which a definite or-
dinal can be assigned would be a contradictory set.
However, there does exist an absolute in this, and it
has to be identified precisely as that generating
process or, if you will, the process of counting, of
“organizing’’ the different levels of the infinite. When
we focus on this process function rather than the
completed product or outcome of the counting or
generating, this process can never be conceived as a
completed infinite. To put it another way, it would
clearly be a contradiction in terms to attempt to
conceive of an open-ended process as being completed
at a given point. So there is really no mystery in the
Burali-Forti paradox. Cantor’s own failure to point out
why no such contradiction exists simply points again
to the fact that Cantor’s own comprehension of the full
impact and implications of his work, especially in the
later parts of his life, became more and more clouded
— clouded precisely through his own increasingly
formal interpretation of the results of his work.

Toward the Continuum Hypothesis

With the 1883 publication of the Grundlagen,
Cantor’s work reached a critical point. We shall ex-
plain in the following how most of the critical
questions concerning the further elaboration of his
theory revolve around the ‘‘continuum hypothesis.”’
This question further serves as a convenient focal
point for the discussion of the broader epistemological
implications of the theory of the transfinite.

Let us review the mathematical results and the
battery of analytical tools available to Cantor at the
conclusion of the Grundiagen. ‘
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First, as early as 1874, Cantor discovered the
existence of point sets of different cardinalities — the
countable sets of the natural and rational numbers
and the uncountable set of the real numbers which can
be regarded as one-dimensional coordinates of the line
continuum. Significantly, in his subsequent mathem-
atical researches, no other cardinalities than these
two, the countable and that of the so-called perfect
sets (defined via his notion of derivative), ever arose.

Second, the definition of the transfinite ordinals led
to the simultaneous definition of successive number-
classes and the result that the set of countable ordinals
is of the size of the second number-class. The trans-
finite ordinals are formed by the same type of limiting
process which generates the irrational numbers
which, in turn, are of the power of the continuum.

On the basis of juxtaposing the result of the two,
Cantor was almost naturally led toward the formation
of the hypothesis, first explicitly formulated in the
already-mentioned 1878 paper, that the line continuum
is of the power of the second number class, i.e., that
there are as many points on the real line as there are
countable ordinals. By the end of 1883, Cantor ap-
peared to be certain that the proof of the continuum
hypothesis was virtually at hand. Thus, at the end of
the sixth essay in the Mathematical Annals series
““On Infinite Linear Point Manifolds'’ (the .Grun-
dlagen piece was number five in the series), he
writes “From this will be deduced with the help of the
theorems proved in No. 5, paragraph 13, that the
(real) line continuum has the power of the second
number class (II).”

But it was not just the ‘‘natural course’’ of his
mathematical researches which led Cantor to formu-
late the hypothesis and expect its early proof. It was
precisely this kind of theorem which appeared to him
to be necessary to affect the transition from the im-
manent reality of his new numbers to their transient
significance. The continuum hypothesis once proved
would connect the abstract second number-class of his
infinite ‘‘counting’’ numbers to the empirical con-
tinuum.

There can be no question that Cantor, in the process
of the invention of his new numbers, had precisely
such an empirical application in mind. This becomes
clear from a letter he wrote to the Swedish mathema-
tician Mittag-Leffler on Oct. 20, 1884. Interestingly, in
this letter he also promises to Mittag-Leffler an essay

- on quadratic forms, exactly the type of topic to which

he would have had to apply himself to reconnect his
work to geometry and, specifically, Riemannian
manifolds. The contents of the letter coincide with the
conclusion to an 1885 article in the Acta Mathematica
Vol. VII, entitled, “On Several Theorems of the
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Theory of Point Sets in an n-fold Extended Continuous
Space G, "

The above investigation on point sets 1 undertook
from the outset not simply out of speculative interest,
but with a view toward applications which [ expected
to be made of them in mathematical physics and in
other sciences.

The hypothesis upon which most of the theoretical
investigations into natural phenomena are based,
have never been very satisfactory to me, and I thought
that I had to ascribe this to the fact, that theoreticians
generally either leave questions about the ultimate
elements of matter in a state of complete in-
determinacy or assume these, as so-called atoms, to be
of a very small but not entirely vanishing volume. L had
no doubt that in order to arrive at a satisfactory ex-
planation of nature, the ultimate or genuinely simple
elements of matter must be presupposed to be of an
actually infinite number and as regards the spatial

~aspect must be regarded as entirely without extension
and strictly punctual.

I was strengthened in this view, when I noticed that
in recent times such eminent physicists as Faraday,
Ampére, Wilhelm Weber, and of the mathematicians
among others Cauchy have stated the same con-
viction...

I start from the view, which I believe to coincide with
that of present day physics, that we have to presuppose
two specifically different types of matter acting the
one upon the other and accordingly also two different
coexisting classes of monads, i.e. body-matter, body-
monads and aether-monads ... From this standpoint
there arises as the first question what powers
regarding their elements are to be ascribed to these
two types of matter, insofar as they are viewed as
body - and aether-monads respectively. in this regard

-T already several years ago formed the hypohesis that
the power of body-matter is that which in my in-
vestigations I call the first power; that on the other

‘hand the power of the aether-matter is the second
power.

We have quoted this most explicit of Cantor’s state-
ments concerning his view of what he called the
transient significance of the transfinite numbers at
length because in it two contradictory elements are
combined. On the one hand it is clear that precisely
from its empirical validity must ultimately derive
what we judge to be the significance of Cantor’s
theory. To the extent that he saw that, and sought to
establish this validity, he was surely moving in the
right direction. Yet, the specific way in which he
suggests his numbers connect-up with the real world is
not only factually wrong but, more significantly, in-
correct in principle and points to the major weakness
in Cantor’s own epistemological development.

What would have been necessary to investigate
was not some kind of correspondence of the static
structure of Cantor’s transfinite system with an
equally static and given structure of ultimate ele-
ments of reality, but rather a correspondence between
the processes of generation defining both of these
structures considered as finished product. In other

words, the basis in reality for Cantor’s numbers would
have had to be identified by trying to find in nature the
Erzeugungs Prozess, the process of generation which
coheres with the ‘“‘Erzeugungs Prozess’’ upon which
the magnificent structure of the transfinite ordinals is
based.

It is this correspondence between processes of
generation which was the real kind of continuum hypo-
thesis which Cantor would have had to discover if he
wanted to proceed beyond the point reached in 1883. It
is, at the same time, ironical and tragic that Cantor
actually had nearly all the necessary evidentiary
material at hand which would have allowed him to
establish such a correspondence. However, he would
have had to look not directly into nature, but first and
foremost into his own mind — at himself as the subject
of the creative process which can and must find itself
first in itself and only secondarily, or by implication,
in the negentropic process of universal evolution.

Parenthetically, if Cantor had come to understand
that his structure of the transfinite simply maps the
trace of the creative process, then he would have been
able to directly utilize the principle of the ‘““‘unity of the
all” which he announced in the Grundlagen in
order to establish the direct coherence between his
mathematical-theoretical investigations and the
evolutionary process of the physical universe. On the
basis of the presently available biographical evidence,
based principally on letters from Cantor to Mittag-
Leffler and a short biographical study published in
1930 by Frankel, it appears that certain unresolved
questions concerning the nature of religious belief
prevented Cantor from identifying what one might

call the secular basis of which the continuum hypo-
thesis was the false ideological representation in his
own mind. Both from a note on the concept of the
absolute in the appended notes to the Grundlagen
and also from a similar note in a communication from
Cantor to a certain Enestroem in Stockholm on
Nov. 4, 1885, the same point emerges — while
Cantor correctly distinguishes between the absolute
and the transfinite modes, and points out that the
failure to make such a distinction represents the
Achilles heal of Spinoza’s [Ethics, his religious
mystification of the contents of the absolute becomes
the identifiable point where his system fails. We quote
briefly from the Enestroem letter:

Cantor argues that the uncritical rejection of the
legitimate notion of the actual infinite is a kind of
myopid which takes away the ability to

see the actual infinite even though in the form of its
highest and absolute bearer it has created us and main-
tains us- and in its secondary transfinite form it
surrounds us everywhere and even lives in our own
mind.



Another frequent mixup occurs between the two
forms of the actual infinite through the way in which
the transfinite gets intermingled with. the absolute
even though these two concepts are strictly distinct in
so far as the former (i.e. the transfinite) is an infinite,
but nonetheless can still be added to, while the latter
(i.e. the absolute) is essentially such that it cannot be -
added to (cannot be made more plentiful) and thus is to
be thought of as mathematically indeterminable.

The problem here ought to be obvious. Cantor identi-

fies the absolute, that which produces the different -

transfinite modes or relative infinities, with God
rather than with the self-subsisting creative process of
his own mind. He then identifies the transfinite modes
with concepts in the mind which is correct as far as it
goes. It becomes wrong when an actual identity of
mind and such concepts appears to be postulated. To
identify substance as subject is the final necessary
step which tragically Cantor was unable to take.
Symptomatic of this and, more specifically, of his
mistaken focus on the structure of the process rather
~ than on the process itself is his developing intellectual
relationship with Edmund Hussel which begins almost
as soon as Hussel arrives as a teacher at the Univer-
sity Halle-Wittenberg in 1887. But before we draw out
the implications of this in a concluding biographical
sketch of Cantor’s, we shall briefly interpose a few
concluding remarks on the subject of the continuum
hypothesis. |

In his famous address to the Paris International
Mathematicians Congress in 1900, Hilbert (12) listed
the continuum hypothesis as the first of the major
“unsolved problems of mathematics. In 1908, prompted
by the succession of paradoxes generated on the basis
of a purely formal conception of Cantor’s set theory,
Zermelo undertook to formulate the theory in axiom-
atic form. The question of the continuum hypothesis
then became posed analogously to the famous earlier
‘question of the independence of the parallel postulate
from the i'emaining axioms of Euclid’s geometry: Is
the continuum hypothesis itself to be added as an
axiom of set theory or is it a provable theorem?

The problem was solved in two steps. First in 1938,

Kurt Gddel proved the consistency of the continuum

hypothesis with the remaining axioms, then in 1963

Paul J. Cohen proved the consistency of the negation
of the continuum hypothesis with the remaining axiom
thus establishing its independence from the axioms.
Moreover, it was a by-product of Cohen’s work that
not only the continuum hypothesis as stated by Cantor,
but an infinite number of other possibilities of
assigning ®’'s to the line continuum emerged as a
consistent possibility. This utteyly destroys axiomatic
set theory as a viable mathematical theory and that
was precisely the conclusion which a large number of
mathematicians drew at the time. What they failed to
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see was that it was not Cantor’s theory that had been-
destroyed, but only the assumption that it could be
comprehensively formulated as a formal axiomatic
theory. Cohen himself, in the conclusion of his 1966
book Set Theory and the Continuum Hypothesis,
suggests the following:

A point of view which 'the author fcels may even-
tually come to be accepted is that the continuum
hypothesis is obviously false. M1, is the set of countable -
ordinals and this is merely a special and the simplest
way of generating a higher cardinal. The set C, that is
the continuum in contrast is generated by a totally new
and more powerful principle, namely the power set
axiom. It is unreasonable to expect that any descrip-
tion of a larger cardinal which attempts to build up that
cardinal from ideas deriving from the replacement
axiom can ever reach C. Thus

C> 8By, Ny Ny |

where

; a=N,

|

etc. This point of view regards C as an incredibly rich
set given to us by one bold new axiom which can never
be approached by any piecemeal process of con-
struction. Perhaps later generations will see the
problem more clearly and express themselves more
eloquently.

Indeed. However we need not accept Cohen’s

" reasons and still can in principle agree with him that

the continuum hypothesis is false. In general terms,
we have already stated this above. To briefly further
elaborate the point, the continuum and, if there is
going to be any significance for that concept, the
continuum of the real world manifold clearly cannot
be assigned any one cardinality because this con-
tinuum is constantly in a process of further evolution.

- There exists a continual process of generation, Er-

zeugungs Prozess, which produces a nested sequence
of manifolds each internally characterized by a
specific relative infinity or transfinite number and in
such a fashion that we can conceive of every new
manifold characterized by a new order of the trans-
finite. Each successor manifold is seen to function as a
““counting manifold,”” which bears the same relation-
ship to the preceeding manifold as w bears to the:
preceeding natural numbers. Such a counting mani-
fold embodies the principle of internal differentiation
and organization of that preceeding ‘manifold. We
shall see in the final section of this paper how this
allows us to give, at least in outline or in program-
matic form, a new interpretation to the General
Theory of Relativity which removes the principal
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objectionable features of that theory, in particular,
the assumption of a necessary cosmological
singularity or ‘‘Big Bang’’ if you prefer.

Biographical Notes

Georg Ferdinand Ludwig Philipp Cantor was born
on March 3, 1845 in St. Petersburg. His father was a
Jewish merchant who, by the time Georg Cantor was
born, had already converted to the Evangelical
Lutheran faith. Cantor’s mother, Maria Eoehm, was a
Catholic and came from a family of practicing
musicians. In 1856, the family moved to Frankfurt
where Cantor attended various schools in Frankfurt,
Wiesbaden and Darmstadt.

He began his university studies in Ziirich in the fall
of 1862, but then moved to Berlin in the fall of 1863 to
attend lectures and seminars by Kummer, Weier-
strass, and Kronecker. Apart from the summer
semester of 1866, which was spent in Gottingen,
Cantor spent the major part of his studies at the
University of Berlin where he received his PhD. in
Dec. 1867. In 1869, he took a teaching job at the
University in Halle-Wittenberg. The subsequent
decade or more, precisely the period from 1871
through 1884, defines the most productive period of his
life. He became a full professor in Halle in 1879, and
for health reasons was forced to retire from his
professorship in 1905. He died on Jan. 6, 1918, in
the psychiatric clinic in Halle.

We have already referred to the tragic turn of

-~ Cantor’s life shortly after he had concluded the

Grundlagen, and a few less significant subsequent
papers. An almost clinical record of the decisive crisis
in his life which developed early in the year 1884 led to
a period of temporary insanity in the spring and early
summer of 1884. The subsequent deep and recurring
depression is contained in a sequence of 52 letters
which, in 1884 alone, Cantor wrote to his only friend
among his mathematician colleagues, the Swedish
mathematician Mittag-Leffler.

The appended excerpts from some of these letters
should give a relatively clear picture of the succession
of events and of their contents. The two immediate
proximate causes for Cantor’s mental collapse are to
be sought in, first, the circumstances surrounding his
inability to come to grips with the problem of the
continuum hypothesis and the repeated failure to
formulate a proof, and, second, and more funda-
mentally, his relationship to the Berlin mathematics
Czar, Leopold Kronecker.

Cantor is by no means exaggerating when in various

letters he charges that for the entire period of the 1870s
and early 1880s, in which he publishes the major
results of his scientific effort, Kronecker is making it
his personal business to discredit Cantor’s work
among the largest conceivable circle of mathem-
aticians throughout Europe. For example, he wrote a
series of letters to the eminent French mathem-
atician, Hermite, charging that Cantor’s results on
transfinite numbers were nothing but entirely base-
less speculations, in order to obviate any influence of
Cantor’s work, not only in Germany, but in France as
well. : |

There can be no question that at least until the mid-
1880s Kronecker’s efforts were only too successful.
Cantor consequently found himself in a social environ-
ment where, among those whom he regarded as his
peers, he found absolutely no resonance for his scien-
tific efforts. His later lapse into an almost structur-
alist interpretation and reformulation of his earlier
work must be regarded as a direct consequence of this
extreme form of social isolation. There can be no
doubt that under these circumstances he began to
develop certain paranoid fantasies which, by the
spring of 1884, led to a complete nervous breakdown. It
also appears that in this situation he received little or
no support from his immediate family.

Acute periods of insanity were followed by periods
of depression, a sense of utter worthlessness and in-
creasing guilt feelings concerning his relationship
with Kronecker. He began to accuse himself of having
gone too far, of doing injustice to Kronecker in his
accusations. Finally, in the fall of 1884, Cantor decided
‘“t0 go to Canossa,”’ or Berlin as it were, to attempt
some form of reconciliation with Kronecker. It is clear
from his correspondence with Mittag-Leffler in this
period that, possibly under family pressure, what
preceeded the actual visit with Kronecker in Berlin
was nothing short of a process of brainwashing which
Cantor inflicted upon himself. After the actual
meeting- with Kronecker, Cantor at least partially
replaced his own identity with that of the Berlin
controller. In fact, Cantor’s growing formalism after
1884 amounts to a rejection of his own earlier identity
and the adoption, at least in part, of the outlook
characteristic of Kronecker’s views. By the end of
1884, it is clear that much of Cantor’s creative genius
was destroyed. We have the record in his own
recounting of a visit to Halle by Mittag-Leffler in that
period. This only friend of Cantor’s found him engaged
in the obsessive effort to prove the identity of
Shakespeare and Francis Bacon. Cantor never fully
recovered from his 1884 collapse.
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Excerpts of letters from Cantor to the Swedish
mathematician Mittag-Leffler written in the year
1884; quoted and translated from A. Schoenflies, ““‘Die
Krisis in Cantor’s Mathematischem Schaffen’’ (‘‘The
Crisis in Cantor’s Mathematical Creative Work™),
Acta Mathematica, 50 (1928), pp. 1-23 ‘

Januaryl, 1884 |

Your perception of the meaning of my application
(for a professorship) is entirely correct; 1 did not
think in the least that I would already acquire the
Berlin positiogat this point. _

Since, however, I am interested in getting it in due
time, and since I know that Schwarz and Kronecker
for years now have been concocting horrible intrigues
to discredit me for fear I might get there at some point
or other, I thought it my duty to take the initiative
myself and apply to the minister. |

The exact effect this would have I knew entirely in
advance, namely that Kronecker would jump as if he
had been stung by a scorpion and along with his auxil-
iary troops would begin to howl such that Berlin
would think itself displaced into the African deserts
with its lions, tigers and hyenas. It appears that I have
actually achieved this purpose.

January 6, 1884

The idea conveyed in your letter of December 28,
that even the French mathematicians are now
beginning to show an interest in my work, does not
quite strike me as plausible....for as long as I have
been engaged in scientific work, Kronecker has
systematically attacked my work and declared it as
suspect, as empty fantasies without any real basis.

January 21, 1884
My dearest friend!

In answer to your letter of the 17th, let me tell you
that I am in agreement with everything you intend to
do.

Your letter contains many interesting matters; [
would very much welcome it, if Kronecker would

carry out his intention and put his grudge against

function theory and the general theory of aggregates,
of which the latter is a part, into written words...

Now I am eager to see what he will send you for the
Acta ; if he should really do this, then his essay will be
full of malice against the neighbor in Halle-
Wittenberg; who knows if his natural cleverness will

not at the last moment win the upper hand so that, as
up till now, he will keep his arms in hiding, something
which, at any rate, has brought him more success than
open enmity would...

Many greetings and I remain de tant mon coeur votre

- amidévoué

George Cantor

January 25, 1884
My dear friend' |
...With respect to this man (i.e., Kronecker) take to
heart the words ““timeo Danaos et dona ferentes.’”’...

It is highly suspicious that he would offer the
product of the passion he has collected inside of
himself against function theory and the theory of
aggregates specifically to you and your journal; 1
suspect that the only purpose he pursues with this is to
drive me or rather my essays out of the ‘““Acta’’ much
as he has entirely succeeded in doing with respect to
“Crelle’s Journal.”

The reason why I have not sent anything there for
seven years is none other than that I forever preclude
any communality with Herr Kronecker; he knows this
quite well and now also wants to force me to stop
publishing in the Acta.

I'll'see if I am not right.

Many sincere greetings from your faithfully devoted
friend '

George Cantor

January 26, 1884
My dear friend. ‘
...S0 the Acta are supposed to be good enough to

spread around this filth, his own journal he does not
want to use for it.

How does Kerr Kronecker dare tell you that ‘“he
hopes you will accept his work for the Acta with the

- same impartiality as in the case of the investigations
.of your friend Cantor’’?

Maybe his concoctions require impartiality and
tolerant treatment in protection of that little bit of a
transitory power position which he has been able to
create for himself; for my work I demand partiality ,
but not partiality for my own transitory person, but
partiality for the truth, which is eternal and with the
most sovereign disdain looks down upon those moles
who dare imagine that their miserable scribblings will
be able to adversely affect it in the long run.

Sincere greetings from your eternally faithful friend
George Cantor

s
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September 9, 1884

It is very interesting to me to gather from your post
card today that at least for the moment your paper has
only done harm to you in France, since in it you take
recourse to my own work...

I suspect that the tone of this affair was set in Berlin
and Gdttingen and that the good Frenchmen only go
along with it out of politeness.

Even Weierstrass probably is not innocent in this;
even he does not like it, that you have joined me in
friendship.

August 18, 1884
My dear friend! . f.

....The excitements I have had this summer and of
which I have written to you, lie behind me. They had
their basis, as I can now tell you, in the differences
into which, not without my own fault, I had gotten
through my scientific work. Perhaps you had already
correctly suspected this.

Not exhaustion from my work, but frictions, which 1
reasonably could have avoided, were the cause for my
distemper. ‘

The fact that Kronecker so sharply spoke against
my work shpuld not have inflamed me against him to
such an extent as you saw this last winter; in my
eagerness | actually went to the point of injustice in
the letters I wrote to you about this. I truly regret this.
And even if Kronecker initiated all this, I have none-
theless come to the decision to hold my hand out to him
and attempt areconciliation with him...

With sincere greetings, your devoted friend
G. Cantor

September 9, 1884

Then I will also look up Herr Kronecker and we’ll
see if your positive opinion of my persuasiveness will
be proved correct with him; I do not expect this, for
this is, so to speak, a question of power, and that kind
of question can never -be decided by way of per-
suasion; the question is which ideas are more power-
ful, comprehensive and fruitful, Kronecker’s or mine;
only success will in time decide our struggle!!

August 26, 1884

I am now in the possession of an extremely simple
proof for the most important theorem of the theory of
aggregates, that the continuum has the power of the
number class II.

November 14, 1884
My dear friend,

You know that frequently I thought to be in
possession of a rigorous proof that the line continuum
possesses the power of the second number class: time

and again there were gaps in my proofs and always I

exerted myself anew and in the same direction and
when once again I thought I had reached the most
desired goal, I suddenly rebounded, because in some

hidden corner I noticed a faulty deduction.
And when in these last days I once again exerted

myself to the same purpose, what did I find? I found a
rigorous proof that the continuum does not possess the
power of the second number class and moreover that
its power is not given by any specifiable number.
However fatal an error may have been, especially
one that has been harbored for so long, its final
elimination, in turn, is so much more of a gain.

Novembef 15, 1884
My dear friend. _
The reasons of which I wrote yesterday against the

. theorem of the second power of the continuum, I have

again disproved today; thus all the reasons in favor of
the second power of the continuum once again come
into the foreground unconquered....

December 17, 1884

- Perhaps it will interest you that in the course of the
studies with which I was occupied when you honored
me with your visit last Sunday, I have become more
and more convinced that the view held by some
Americans and Englishmen concerning the author-
ship of the works bearing Shakespeare’s name, is
correct. Francis Bacon, he and he alone could have
been the author of these master works; for it is one
and the same fiery spirit which confronts us in the
dramas on one hand and in the ‘“moral essays’ and
the rest of Bacon’s works on the other.




[II. Relativity

Whatever may be one’s attitude in detail towards these
arguments, this much seems fairly certain: new
elements which are foreign to the continuum concept of
the field will have to be added to the basic structure of
the theories developed so far, before one can arrive at
a satisfactory solution of the problem of matter.
Wolfgang Pauli,
Th eory of Relativity.

The principal datum any competent theory of the
physical universe in its entirety must account for or,
minimally, be consistent with is the existence of
human beings in it, including the creative capacity of
the human mind. This is a modest enough require-
ment; however, I can say without hesitation that there
exists at his point not a single general physical theory
that satisfies it, or, for that matter, appears to have
been designed to do so.

Given the, at best, ‘cynically indifferent and, in
many cases, thoroughly reactionary and anti-human
social and political ambiance and practice of con-
temporary mathematicians and physicists, this is
hardly surprising. Their intellectual environment is
dominated by the most wretched behaviorist and
positivist accounts of human existence, and there is
nothing in their individual lives which would provide
them with .any kind of insight into the essential
characteristics of the process of expanded social
reproduction‘or demonstrate to them the necessity of
fighting for a concept of the cohering process of the
creative activity of their own mind. But how, in the
absence of even the rudiments of a humanist outlook
defined by the necessity of progress through the
creative intervention of the individual, could the
problem of identifying a structure of the physical
universe abiding by the same kind of necessity even
arise? Can anyone imagine a Massachusetts Institute
of Technology physicist saying ‘‘here I am, molding
human beings in my image,”” to be creative, to
tecognize no ‘“boundaries for mankind,” and this
ability is the only thing worth explaining and it cannot
~ be explained unless the whole world is molded in my
image? But this is precisely what is required. Nothing
short of it will succeed in wrenching natural science
out of its .present state of misery and abysmal
mediocrity. Comparison of today’s scientists’ credo of
either propitiation or anatchist reclusion with the
outlook of the early 17th century founders of modern
science — Giordano Bruno, Johannes Kepler, Rene
Descartes, and even of the somewhat dubious Galileo
— further defines the point. While their life-
circumstances in the period of the Counter-
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Reformation and the devastation of the Thirty Years
War were hardly preferable to ours, they pursued
their scientific work with outstanding moral courage
( — compare the dismal capitulationism of the Mc-
Carthy period! — ), grounded firmly in the humanist
principles of the primacy of conscious human
existence, the perfectibility of the human mind and
the unity of the universe in which these qualities must
find their organic expression. No lesser standards of
moral fortitude and cohering scientific rigor are ac-
ceptable today.

In light of this, I will now evaluate Einstein’s

- relativity, specifically its cosmological implications.

That amounts to the task of looking at General
Relativity on the basis of Riemannian geometry as
amended by Cantor's theory of the transfinite rather
than in terms of the affine Levi-Civita-Weyl inter-
pretation. The connection between Riemann-Cantor
and relativity is most easily established by way of
Felix Klein’s theory of invariants which he developed
in his 1872 ‘*Erlanger Program’’; in particular, 1 will
make a tentative identification between Kiein's in-
variants with respect to a given group of transforma-
tions and Cantor’s transfinite numbers, and demon-
strate that the chief defect of General Relativity lies in
limiting the notion of the physical continuum to that of
a linear continuum governed by just one order of the
transfinite. |

Felix Klein: The ‘‘Erlanger Programm.”’

If a three-dimensional object such as a cube, a cone,
or a pyramid is moved from one place in three-
dimensional space to another, we assume that its size,

~its angles, etc. remain unchanged by this process.

Now let a cube be given by a definite set of spatial
coordinates X,v,z and instead of moving the cube,
assume that the entire space surrounding it (and
represented by a definite coordinate system) is
displaced by a certain amount, rotated about the
origin of the coordinate system, and so forth. Such
motions of the total space can be expressed as trans-
formations of the coordinate system originally given,
and the geometrical properties of a rigid body are then
definable as those properties of the body which remain
invariant with respect to specified kinds of coordinate
transformations.

Based on such considerations, Felix Klein in his 1872
inaugural address at the University of Erlangen
programmatically defined all of geometry as the

‘study of the following general type of problem:
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Given a manifold and a group of transformations
defined in it; the objects belonging to the manifold are
to be investigated with respect to such properties as
remain unchanged through transformations of the
group.

Or equivalently:

Given a manifold and a transformation group in it,
develop the theory of invariants with respect to the
group. |

Klein's concise and comprehensive formulation
marks the culmination point of successive ap-
plications of the methods of projective geometry to
ever wider areas of geometrical research — a success
story which began only 50 years earlier with the 1822
pulication of Poncelet’s Traité des Propriétés
Projectives des Figures. (13) Poncelet starts from
the notion of central projection ( or perspective) and
proposes to determine those fundamental internal
relations of objects that remain unchanged under
arbitrary projections of that kind.

Analytically, projections in three-space are given by
fractional linear transformations of the coordinates
X,¥,z which have the same denominator:

: W
a,x+byyteztd,

: + +d.
ax+byt+cztd,

'7, _agx t b,y +c;z+d,

a,x + by y+ cyz.+ dy

Affine geometry can immediately be seen to be part
of projective geometry by noting that affine trans-
formations are simply projective transformations
with the common denominator one. The transition to
metric geometry, however, requires a somewhat
different approach, and for a long time it was believed
that metric geometry and the ‘‘geometry of position’’
(projective geometry) were two irreducibly different
branches of the subject. The bifurcation was over-
come with the 1859 publication of Arthur Cayley's A
Sixth Memoir on Quantics, where the concept of
general projective measure determination is defined
with the result that

metrical geometry is a part of descriptive (projective)

geometry and descriptive geometry is all geometry
and reciprocally (Cayley).

Cayley observed that the basic concepts of metric
geometry (angles, distances) are covariants of the
imaginary spherical circle, that is, remain unchanged
by all linear functions which transform x2+ y2+ 22
into itself. Analogous to projective and affine
geometry, metrical geometry can thus be defined as
the theory of invariants of that subgroup of the group
of projective transformations which leave the
spherical circle fixed.

Soon after first encountering Cayley’s ideas in 1869,
Felix Klein proposed their natural generalization:
Through adjoining different invariant conic sections
(or, more generally, quadratic forms

2 :aik Xj xk)

to a given system of objects, the projective group gets
narrowed down to a variety of different subgroups, all
representing generalized metrics of one sort or

Projective transformations are the most general kind of

linear coordinate transformations. Like affine irans-
formations, they map- straight lines into straight lines

(straight lines are projective invariants). However,

projective transformations transform certain finite points to
infinity, and 'consequently they do not preserve the

parallelism of lines and more generally do not respect the
differences between different conic sections, such as ellipses,
parabolas, and hyperbolas. Expressed positively, any conic¢
section can be continuously transformed into any other one
by appropriate projections and projective geometry
recognizes no inner differences between them.



another — including the non-Euclidean ones. Nor is
there any need to limit attention to the projective
group, itself a subgroup of a still larger group — the
group of all continuous coordinate transformations.
According to the fundamental theorem of projective
geometry, which states that the only continuous
transformations which transform straight lines into
straight lines are the projective ones, the projective
group can be singled out from theé larger group
through adjoining the manifold of straight lines (or,
equivalently, planes). The group of all continuous
transformations — if we require them to be one-to-one
— is itself of great significance: properties of
geometrical objects which remain invariant with
respect to all such transformations are called
topological properties, and topology therefore appears
simply as a branch of geometry in Klein’s sense.

Soon after the 1904-05 publication of Lorentz’,
Poincaré’s and"Einstein’s fundamental results on the
electrodynamics of moving bodies (‘‘Special
Relativity’’), Klein noted that his generalized con-
ception of geometry as the study of invariants with
respect to specified groups of transformations could
be used to cast the new physical theories into coherent
mathematical form and to remove the air of paradox
that accompanied their original formulation. The
formal details are presented in a 1910 paper ‘“On the
Geometrical Foundations of the Lorentz-Group.” In
the introduction, Klein writes:

What contemporary physicists call relativity theory is
the theory of invariants of the four-dimensional space-
time region x,y,z,t (the Minkowski ‘“‘world’’) with
respect to a specified group of collineations (projective
transformations), viz. the ‘‘Lorentz-group’; — or
more generally...: one could very well replace the
name ‘‘theory of invariants relative to a group of
transformations’ by the word ‘‘relativity theory with
respect to a group.”’

I will now give brief expositions of Special and
General Relativity from Klein’s standpoint.

¥

Relativity Theories

The Michelson-Morley experiments (see
illustration) are usually taken to have disproved the
existence of the absolutely stationary ‘‘luminiferous
aether” assumed by the Maxwell-Lorentz theory of
electrodynamics as the medium for the propagation of
electromagnetic waves (light, etc.). Such views at
best represent a mistaken emphasis and will have to

answer to the question of what might be meant by the.

‘‘propagation of waves in empty space.” What the
experiments did suggest — and this is Einstein’s
starting point in his 1905 paper ‘“‘On the Elec-
trodynamics of Moving Bodies’’ — is

29

that the phenomena of electrodynamics as well as of
mechanics possess no properties corresponding to the
idea of absolute rest.

Unfortunately, there exists an extremely well-
established electrodynamical phenomenon — the
constancy of the speed of light and its independence of
the velocity of the emitting source — which implies a
direct contradiction with this hypothesis. It is the
principle merit of the Michelson-Morley experiments
to have brought this inconsistency between Newtonian
mechanics and Maxwell’s electrodynamics out into
the open. The contradiction can be demonstrated
explicitly as follows: _

1. Galilei’s Law of Inertia states that a body at rest
or in uniform rectilinear motion remains in that state
as long as no forces act upon it. This law is the root of
the relativity principle of classical mechanics, that,
for any two coordinate systems which move uniformly
and rectilinearly with respect to each other (‘“‘inertial
systems’’), the laws of mechanics hold in the same
simple form. Expressed in the language of the
“Erlanger Programm,” the laws of Newtonian
mechanics are invariant relative to the group of
“Galilei transformations”’

x =x — vt
y =y
7 =z
t'=t.

(The system of equations above is a simple substitu-
tion of the general Galilei-Newton group of Chapter II,
sectionl.)

The Michelson-Morley experiments, etc. suggest that
the laws of electrodynamics are invariants of the
Galilei group as well.

2. Let ¢ be the velocity of a light ray with respect to
an inertial system i ; let j be an inertial system which
moves with constant velocity v in the direction of the
x-axis of i. Then the velocity of the light ray with
respect to j is ¢c—v. Thus, contrary to hypothesis, a
crucial law of electrodynamics, the constancy of the
speed of light, is not an invariant of the Galilei group.

Rather than resorting to some ad hoc construction
(aether convection, etc.) to deal with the difficulty
posed by the inconsistency of the relativity principle
with the constancy of the velocity of light, Einstein
took it as the occasion for a thorough re-examination
of the conceptual bases of the theories involved.
Though not aware at the time of Riemann'’s investiga-
tion in the theory of manifolds and the radical
relativity principle advanced in the Hypothesen that
all measure-relations are to be determined relative to
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The Michelson-Morley Experiment

As Maxwell first remarked, the time required by a ray of
light to travel from a point A to a point B and back to A must
vary — though only by a magnitude of second order — when
the two points together undergo a displacement with respect

to the stationary light-carrying aether.

In experiments carried out by Michelson in 1881 and again
by Michelson and Morley in 1887 no such variation was
discovered.
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Details of the Experiment

A ray of light originating at 0 is aimed toward point Aon a
half-silvered mirror. Half the light is reflected toward mirror
one at C and half of it passes through to mirror two at B. The
ray at C is reflected back toward A and half of it is trans-
mitted toward D: the ray at B is also reflected back toward
A, with half of it reflected toward D. The two rays have paths
in common between 0 and A, and between A and D. The parts
of the rays that do not have paths in common make round
trips in perpendicular directions. The two rays produce in-
terference fringes at D, and it is this fringe pattern that is
observed. Since it is a very sensitive measure of wave length

and since wave length alters proportionately with the speed
“of light, a change in the interference pattern was expected as
the entire experimental set-up (mounted on a massive stone
disc floating on mercury) was rotated about a vertical axis.
However, while a large number of experiments with the
apparatus occupying many different orientations with

* respect to the fixed stars was carried out, the displacement

of the interference fringes always remained well within the
errors of observation. The speed of light is not influenced by
the motion of the earth even to the extent involving second
order quantities.



actual empirical processes, Einstein's conclusions
tended precisely in that direction. .

The formulation of the relativity principle of
classical mechanics and the transition from one
inertial system to another by means of transforma-
tions of the Galilei group are based on two tacit
assumptions: the absoluteness (independence of the
choice of the inertial system) of time and of length, or,
more accurately, the existence of absolute standards
of measurement of time and of length equally em-
ployable in all inertial frames independent of their
state of motion. Otherwise how could we take the
velocity v (as a function of time and length) of a body
with respect to system i and compare it to the velocity
v’ it has with respect to system i’ ? Einstein showed —
and this is the essential contents of his ‘‘Special
Relativity”’ Theory — how such comparisons can be
made without invoking absoluteness assumptions, and
that it is precisely by defining time relative to the
actual physical process of the propagation of light in a
vacuum that the stated contradiction between
mechanical and electromagnetic phenomena is
eliminated.

The epistemologically crucial point in the ‘“‘em-
pirical definition’” of time is the relativity of
simultaneity. In pre-relativity physics, the notion of
simultaneity had posed no problem. Just as all
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physical events were assumed to take place and be
measured with respect to stage-like ‘“absolute space,”
so the simultaneous occurrence of two events even at
great distances from one another was, at least in
principle, supposed to be establishable by means of
one big ‘“‘absolute world-clock,” with clocks used in
actual measurement synchronized with respect to it.
The problem arises when we ask ourselves how,
metaphysical assumptions aside, such synchroniza-
tion is actually to be carried out.

Einstein proposed the following: Let p and q be
points at rest with respect to each other, and assume a
clock has been positioned at each point. Assume
further that at time |, a light ray is emitted from point
p, at time  the ray is reflected at point q, and at l;, it
returns to p. Then the clocks at p and q are said to be
synchronized if

,=( L+t )/ 2.

As a consequence of this notion of synchronization by
means of an, in principle, arbitrary physical process
connecting different places, simultaneity looses its
absolute character. Events simultaneous relative to
system j = (p, () will not be simultaneous in system

j = (r, s). , if  moves with velocity v relative toi.

Relativity of Simultaneity

) ---—---—--‘_--

Let systems A and B be in relative motion (of velocity v)
with respect to each other and let events e, and e,occur at
points p and q respectively. We say that e; and e, occurred
simultaneously, if light rays sent out from p and q at the
occurrence of e;and e;meet exactly at the half-way point m.

Now assume simultaneity of e; and e, with respect to
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system A. Since system B moves with velocity v toward point
a, the light rays sent out from p and q at the occurrence of e
and e, will not meet at the midpoint between p” and q’ (the
points corresponding to p and q in system B), but at a point
closer to q’ ; e and ejare not simultaneous with respect to
system B. :
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The most significant implication of this relativity of
simultaneity (and hence of time generally) is that the
above contradiction between classical relativity and
the constancy of the speed of light is now no longer
derivable. Incorporating the law of the independence
of the propagation of light from the motion of the
source into classical relativity — given the newly
found relativity of time — becomes an exercise in
simple algebra. Transition from a coordinate system
(x,v,z,t) to a system (x’,y’,z°,t’) is to be effected by
means of the transformation of the so-called Lorentz
group

, x — vi , , '
X = ; » Y TV, 7 =7,
| -
2
1 —-Y x
2
U =
| -
(:2

In mathematical terms, therefore, Special Relativity
is just the invariance theory of this transformation
group, which for ¢ -»oo becomes identical to the
Galilei group, and whose characteristic invariant is
given by the expression

X2 +y2 + 42 — 212

Close inspection of the formal properties of this in-
variant allowed Hermann Minkowski, who at one time
had been Einstein’s mathematics teacher at the
Federal Institute of Technology in Ziirich, to develop
a formulation of Einstein’s Special Theory, which
brought out the fullest epistemological implications of
the discovery of the relativity of time. A 1908 Cologne
address Minkowski delivered to the Assembly of
German Natural Scientists and Physicians starts out
with the words:

The views of space and time which I wish to lay
before you have sprung from the soil of experimental
physics, and therein lies their strength. They are
radical. Henceforth space by itself, and time by itself,
are doomed to fade away into mere shadows, and only
a kind of union of the two will preserve an independent
reality.

Minkowski observed that if in place of the time t the
imaginary quantity u = ict ( 1 =v~1) is introduced,
then the quadratic differential form

x2 +y2 +42 — c2t?

transforms into

.X2 +y2 + 72 +u?

and thus becomes completely symmetrical in the
space and time coordinates, a symmetry which is
communicated to all physical laws which are in-
variant with respect to the Lorentz group. The four
coordinates x,y,2,t (orx,y,z,u) can, therefore,from the
outset be regarded as the coordinates of world points
of a four-dimensional space-time manifold, the worid.
In that case, the expression

x2 +y? + 42 +u?

which is Lorentz invariant, is most naturally viewed
as the square of the distance of two world points,
providing the Minkowski world with an almost-
Euclidean metric structure. If this world is regarded
as a substantial totality with no empty space allowed,
then a substantial point at any world point x,y,z,t may
be recognizable at another time, with the variations of
its spatial coordinates dx,dy,dz corresponding to a
time variation dt. For variations of the parameter t,
the substantial point will describe a curve in the four-
dimensional manifold, its world line, and all physical
laws will find a simple expression as invariant
reciprocal relations between these world lines.
Equipped with the economical concept of the four-
dimensional Minkowski world, it is easy to apply the
Riemannian relativity concept to Einstein’s Special
Theory and recognize an obvious asymmetry.
Riemann’s point of view demands that all measure-
relations be empirically determined. In Special
Relativity, this is satisfied for the temporal, but not
for the spatial components of the world-manifold.
Thus, after resolving the apparent contradiction
between classical mechanics and electrodynamics,
the proper question for Einstein (from a Riemannian
perspective) would have been: what are the implica-
tions for physical theory and what would be an ap-
propriate mathematical formalism for extending the

- relativity of measurement to all the dimensions of the
four-dimensional world?

The most general answer is suggested by applying
Riemann’s relativity principle to the expression

me 2

E=

for the energy of a material particle implied by the
Special Theory. It establishes a definite quantitative
relationship between the inertial mass and the energy
of a material particle, allows the measurement of the
one through the other, and removes the mass-energy
dualism of pre-relativity physics. Consequently, a
Riemann-type generalization of Einstein’s Special
Relativity would define the measure-relations of the
world-manifold relative to the in-general
inhomogenous local distribution of energy and the
energy-equivalents of local masses.

Such a theory, characterized by the dependency of
the metric field of the manifold upon the overall



energy-distribution field (i.e., the total material =
energetic contents of the world) would contain Ein-
stein’s own General Relativity Theory, which he
developed by way of a ten year detour via the principle
of the equivalence of inertial and gravitational mass,
as a special case. In it, the gravitational field and the
inertial guidance field, rather than representing in-
dependent forms of energy, would be regarded as
specialized ‘‘projections’’ of the total energy field and
their otherwise extraordinary equivalence would come
to be simply one more empirical fact about the world-

manifold among others. This is the more significant,

since only a ‘‘general’’ relativity theory, derived with
the inherently limited objective of providing a
theoretical justification for the equivalence principle,
makes plausible the adoption of the restrictive
assumption of the Euclidean-ness of the manifold in
the small. From the standpoint of general Riemannian
geometry, the empirically demonstrated identity of
inertial and gravitational mass (or worse yet,
‘“‘Gedankenexperimente’’ concerning imaginary
elevators, etc.) appears as a mere accidental point of
departure for the development of the relativity theory
of the world-manifold; so, of course, does the implied
exclusive choice (criticized in the Weyl section above)
of a quadratic differential form as the world-metric.
Einstein’s derivation of the energy-equivalent of
mass, on the other hand, represents the most im-
- portant line of his investigation, and the suggested
Riemann-generalization of Special Relativity based
upon it would have raised directly the problem that
still remains open today: the determination of the
energy of the interior of charged particles. Con-
sideration of this problem, in turn, would have in-
dicated the choice of a world-geometry opposite to

that which ultimately vitiates Einstein’s entire ap-

proach: not linearity, but increasing complexity of the
geometry of the manifold in the small would have been
the obvious direction in which to proceed, opening up
the way toward consideration not only of static
geometrical configurations, but of the geometry of
~ dynamical interactions between field and particles
which are now beginning to be explored in plasma
physics. (14) -

Singularities

This world-order did none of gods or men make, but it

always was and is and shall be: an everliving fire,

kindling in measures and going out in measures.
Heraclitus, fragment 30.

The mathematical formulation of Einstein’s
General Relativity Theory in a sense is simpler than
that of the Special Theory: the laws of nature are
required to be invariants not just with respect to a
certain group of orthogonal linear trans;formations
(Lorentz group), but with respect to all continuous
point transformations with the adjoint differential
form '
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ds? zgikdxidxk (gik:gki).

This formulation, while it eliminates some of the
asymmetries of the Special Theory, remains subject
to the objections I raised above against Hermann
Weyl’s proposed solution of the ‘““Raumproblem’’: the
exclusive adoption of the differential form (I) in-
troduces the kind of linearity (Euclidean-ness in the
small) into the world-manifold, which makes a theory
of measurement based upon it inapplicable in prin-
ciple to the problem of matter. Uneliminable
singularities arise which have exactly the same
epistemological status as Kantian ‘‘things-in-
themselves’’: a priori unknowable, their existence
engendered by the assumption of a priori categories of
measurement.

Einstein was acutely aware of this problem of
singularities and on several occasions expressed the
hope of being able to handle it by extending Maxwell’s
electromagnetic or his own gravitational field theory
into a singularity-free theory of the unified physical
field. Presumably — cf., the 1919 paper ‘Do
Gravitational Fields Play an Essential Part in the
Structure of the Elementary Particles of Matter?”
and also the 1917 ““Cosmological Considerations on the
General Theory of Relativity’’ — this was to be done
by utilizing gravitational forces to counterbalance

repulsive Coulomb forces and repulsive elec-

tromagnetic pressures to prevent gravitational
collapse, thus avoiding both microscopic and
macroscopic (cosmological) singularities. However,
all attempts in this direction failed — as well they
should have: there is only one unified physical field to
begin with, rather than qualitatively different and
separate gravitational, electrical, magnetic, etc.
fields which are later glued together into one unified
one. There exists, of course, qualitatively
distinguishable components of the unified field, but
they carnot conceivably bear the kind of linear
relations .3 each other that Einstein assumes. And all
along it is overlooked that it is actually the implicit
linearity of the differential form (I), which is prin-
cipally responsible for inducing singularities in the
first place and will continue to do so if it is carried over
into a unified field context, much as it did in the
physically more impoverished environment of the
gravitational field.

Aside from its inapplicability in principle to the
problem of the structure of matter, the difficulties
with Einstein’s General Theory are best demonstrated
through an examination of its cosmological con-
sequences. Again we meet with the conjuncture of
linearity and singularity: given certain reasonable
assumptions, the Einsteinian universe has a
“beginning’’ and an ‘‘end,’’ and in between undergoes

- an essentially linear process of expansion and

recontraction.
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This was not at first recognized. In fact, assuming
that the hypothesis of a non-static universe would lead
to ‘‘boundless speculation,”’ Einstein in the 1917
““Cosmological Considerations’” had artificially in-
troduced the ‘‘cosmological A -term’’ into his original
field equations as a force of repulsion which would
keep a static model of the universe in equilibrium and
prevent gravitational collapse. Then, in 1922, the
Soviet mathematician A. Friedmann found a new set
of solutions of the original field equations leading to
world-models with a time-dependent metric, i.e.,
models in which the “world-radius’’ (or the typical
distance between arbitrary galaxies) changes with
time. When shortly thereafter the astronomer Hubble
discovered a red shift of the spectral lines of galaxies
proportional to their distance, which could only be
interpreted as a Doppler shift due to a velocity of
recession from the observer, the notion of an ex-

pansion of the universe in its entirety implied by the

Friedmann solution to the Einstein equations rapxdly
became an accepted empirical fact.

However, there are further and much less
satisfactory implications. If, as Einstein (I think
correctly) argues, the universe is closed (i.e., finite,
bounded in space) and spherically symmetric, then
there are excellent reasons to assume.that the metric
of every such universe after the lapse of a finite proper
time (either into the future or into the past) develops a
singularity. (Cf., Einstein, Meaning of Relativity; J.
A. Wheeler, Geometrodynamics).

So, some 10 or 12 billion years ago was there actually
a ‘‘big bang,” ‘‘creation,”’ ‘‘the beginning of the

world”’? And after another 20, 30, or 50 billion years

will “‘the world come to an end’’? The notion is absurd.
All that Einstein’s equations imply is that the ‘“laws of
nature’’ or that fraction of the laws of nature which
they express, cannot be extended beyond a finite

period of time, and — as I have argued at several
points — this is precisely the way things should be.
There is no one set of invariants which governs the
process of the evolution of universal substance once
and for all. Hence, we cannot substantially improve
ourknowledge of that process by proceeding ‘‘in depth”’
from the limited set of laws of Einstein’s General
Relativity as a theory of the gravitational field to the
more complete set of laws of the unified field. If, per
impossibile, a unified field theory in Einstein’s sense
had been constructed, if we were in possession of a
complete set of invariants for this epoch of universal
evolution, it would still not be sufficiently complete to
converge upon the set of invariants that will govern
the next epoch. But such convergence, a kind of time-
extended ‘‘principle of correspondence,’ a notion that
not just ‘‘in depth,’’ but also in time the laws of nature

‘must be continuous with ‘““previous’’ laws or contain

them as a limiting case, ultimately defines the
linearity of Einstein's approach, the Heraclitean
character of his universe.

There is no such continuity of process governed by
unchanging laws; no such process could have
produced human existence, much less be consistent
with our potential for future alterations of the laws of
nature. The structure of the physical universe ex-
tended in time is necessarily that of a non-linear
Cantorean continuum, characterized by variability of
invariants, discontinuity of the process of nature from
the standpoint of any given set of laws. For now this"
must remain in the form of negative assertion. The
immediate challenge in the natural sciences consists
in converting it into positive contents through jointly
conceptualizing the necessary singularities of con-
tinuum-field theories and the discontinuities im-
printed upon microscopic processes by the quantum of
action.

Footnotes )

(1> Gottlob Frege, (1848 - 1925) German mathematician;
author of The Foundations of Arithmetic (1884); first to
espouse the view that all mathematics is reducible to logic.

(2) Cf.. Lyn Marcus, Dialectical Economics, D.C. Heath,
Lexington, Mass., 1975: Free energy ratio, pp. 46-53; Simple
vs. Extended Reproduction, pp. 199-228; Economy as
Process, pp. J84-386. :

(3) The unity principle is the explicit antithesis of any
pluralistic conception and therefore, by implication, of any
world outiook based upon a pluralistic social practice. In this
context, it might briefly be mentioned that the historically,
radically pluralistic social practice in the United States,
which, from at least the 1880s on, was deliberately reinforced
by a variety of counterinsurgency efforts by ruling circles,
engendered a world outlook which was thoroughly anti-
thetical to positive development of theoretical science and
must be regarded as the cause for the otherwise astonishing
fact that as late as the 1930s the United States, which by that

time was without a doubt the world’s most developed in-
dustrial nation, had not yet produced a single significant
original thinker in any of the natural sciences.

(4) De Magnete, W. Gilbert, Dover, New York, 1958, p. 23: ““It
is to be understood, however, that not from a mathematical
point does the force of the stone emanate, but from the parts
themselves;..."”

(5) Letter to Herwart von Hohenburg, Jan. 2, 1607: ““...nata
mihi est haec speculatio: a Luna maria sic attrahi ut gravia
omnia ipsague maria attrahuntur a Terra."’

(6) Marsilio Ficino (1433 - 1499), Italian Renaissance
philosopher, translator of Plato and Plotinus into Latin; the
paradox is developed in ‘“Five Questions Concerning the
Mind of God.”

(7) Newton, Principia: ‘‘Absolute space, in its own nature,

. without relation to anything external, remains always

similar and immovable.”’



Cf. also Newton's hypothesis (!) that the universe has a

center which is at rest.

(8) In this context, it is interesting to note that two of the most
important German geometers of the first half of the 19th
century — August Ferdinand Moebius, who authored and
developed the concept of Barycentric Calculus in 1827, and
Christian von Staudt, who published his thesis on The
Geometry of Position in 1847 — were Gauss' students in
- astronomy for a number of years. Staudt, in particular,
through his Geometry of Position along with the French
Polytechnicien Poncelet was one of the co-founders of
modern projective geometry.

(9) “An electron is a charge of total amount € spread through
a very small volume.”’ — Sir James Jeans

(10) The existence of a set of individuals as a member of a
sequence of those individuals implies the possibility of the
existence of a “‘set of all sets’’ — a contradictory entity.

(11) When Einstein’s Relativity Theory first became known,
(and notorious) in the U.S., Rabbi Herbert S. Goldstein of
New York cabled Einstein: ‘Do you believe in God?”' Ein-

stein cabled back: “I believe in Spinoza’s God...” This is

relevant in this context, as Cantor has pointed out: Spinoza’s
finite existences are hard put to maintain their distinctive
existence in the face of his actual infinite (God).

(12) David Hilbert, 19th century German mathematician,
since 1895 in Gottingen; made significant contributions to
virtually all areas of mathematical research; in 1900
delivered a famous address to an international
mathematicians’ congress, formulating 20 outstanding
problems which have largely determined mathematical
research in the 20th century; founder of the formalist school
of the foundations of mathematics and of the algebraic
theories (“‘Hilbert spaces’’) employed in theoretical for-
mulations of quantum theory.

(13) We note here that Poncelet was a student at the Ecole

from 1808 to 1810. In 1812, he was assigned to the grande

“armée and participated in the Russian winter campaign —
only to be taken prisoner of war. Much of the 1822 Traité was
written during the following two years of imprisonment in

- Russia on the basis of intensive discussions with a small
circle of other imprisoned polytechniciens.

(14) Fruitful formulations, are provided by the work of
research groups led in the U.S. by physicists Dan R. Wells
and Winston H. Bostick, and in the Soviet Union by scientists
V.N. Tsytovich, V.E. Zakharov, and L.I. Rudakov.

W. H. Bostick of Stevens Institute developed the theoretical

and experimental basis for ‘“‘force-free’’ plasma structures,

otherwise known as plasma filaments or, simply, plasmoids:
W. H. Bostick and D. R. Wells, Physics of Fluids, 6, (1963), p.
1325; W. H. Bostick, et al., Physics of Fluids, 9 (1966), p. 2078.
Besides demonstrating dynamic ‘‘self-subsistence,” or

dynamic stability, these structures are characterized by the

fact that the plasma electric and magnetic fields and-or the
plasma mass-fluid motion contains more energy than that of
the thermal, or internal, energy of the plasma gas.

D. R. Wells developed a more comprehensive theoretical
framework which led to a theory of general dynamic
stability: D. R. Wells and J. Norwood, Jr. ; Journal of
Plasma Physics, 3 (1969), p. 21; D. R. Wells, Journal of
Plasma Physics, 4 (1970), p. 645.

The complementary investigations of the Soviet groups is
reviewed in a recent Lebedev Institute pre-print, “‘Electron
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Beams with Gas and Plasma.”’ translated by the U.S.
Department of Defense, and authored by V. N. Tsytovich.
The paper describes theoretical and experimental work with
“‘strongly turbulent” plasmas generated by the interaction of
intense electron beams with a plasma. This ‘“‘new type of
turbulence’ is characterized by the fact that, again, the
energy of the plasma mass motion and electric fields is
greater than the internal energy. The formation of new types
of structures, described as ‘‘a new state of matter,” are
observed. These well-ordered structures. variously termed
cavitons, spikons, and relatons, are in theoretical terms quite
similar to what could be described as a Bostick-Wells type
system of plasmoids or plasma filaments. While these fun-
damental investigations are only at their initial phase, as V.
N. Tsytovich notes, the recent experimental achievement of
the group headed by L. 1. Rudakov, in the generation of
electron beam pellet inertial thermonuclear fusion, indicates
the fruitfulness of these more general theoretical-
experimental investigations.
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Paperback, 1972.
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Foundations of a General Theory of Manifolds

(Grundlagen einer Allgemeinen Mannigfaltigkeitslehre)

A Mathematical-Philosophical Study in the Theory of the Infinite

by Dr. Georg Cantor
Leipzig, 1883

Translator's Note

The translation follows the text of Cantor’s Grundlagen as
reprinted from the Mathematische Annalen in Georg
Cantor. Gesammelte Abhandlungen (Collected Treatises),
edited by Ernst Zermelo. Berlin, 1932, pp. 165-208. The
preface is taken from a separate publication of the Grun-
dlagen , which Cantor prepared hecause, in his own words, ‘it
carries the subject much further in many respects and thus
is, for the most part, independent of the earlier essays’” —
meaning essays one through four of **On Infinite, Linear
Point-Manifolds, '’ of which the Grundlagen is Number five.

All footnotes and notes are taken from Cantor’s original
treatise.

Parentheses contain original German terms or modern
mathematical terms.

—Uwe Parpart
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Preface

The treatise presented here will shortly appear in
the Mathematische Annalen as Number Five of an
essay entitled ‘On Infinite, Linear Point-Manifolds,”’
the first four numbers of which are contained in
Volumes XV, XVII, XX, and XXI of the same journal.
All of these pieces stand in connection with two essays
which I published in volumes LXXVII'and LXXXIV of
Crelle’s Journal, which already contain in ger-
minal form the main points of view that guide me in
the theory of manifolds. Since, however, the present
essay develops the subject much further in certain
respects and thus is in the main independent of the
earlier essays, I have decided to bring it out as a
separate pamphlet and to provide it with a title appro-
priate to its contents.

In presenting these pages to the public, I will not
leave unmenttned that I wrote them principally for
two circles of readers: for philosophers who have

followed the development of mathematics up to the

most recent period, and for mathematicians who are
familiar with the most important older writings and
more recent works in philosophy.

I know very well that the theme I am dealing with
has at all times met with the most varied opinions and
interpretations, and that neither mathematicians nor
philosophers have come to universal agreement with
respect to this theme. I am, therefore, very far from
believing that I will be in a position to have the last
word in such a difficult, involved and comprehensive
matter as is presented by the infinite; since, however,
I have arrived at definite convictions on this subject
through long years of research, and (since) these
convictions have not become shaky but only more firm
in the further course of my studies, I thus thought that

I had a certain obligation to organize them and make .

them public.

I only hope that in so doing I have succeeded in
finding and expressing the objective truth for which I
have struggled.

The Author
Halle, Christmas 1852

Section 1

The presentation so far of my investigations in the
theory of manifolds (1) has reached a point where its
continuation becomes dependent upon an extension of
the concept of a real whole number beyond the present
boundaries; in particular, this extension goes in a
direction in which, to my knowledge, no one has so far
looked for it.

I find myself dependent to such an extent upon this
extension of the concept of number that without it I
would hardly be able to make without constraint, the

-

smallest further step forward in the theory of aggre-
gates (sets). May this circumstance serve as a justi-
fication, or if necessary an excuse, for the fact that
I am introducing seemingly foreign ideas into my
reflections. For what 1s at issue is an extension, or
actually a continuation, of the sequence of real whole
numbers beyond the infinite; as daring as this may
seem, I can nonetheless express not only the hope, but
also the firm conviction that in due time this extension
will come to be regarded as a thoroughly simple,
appropriate, and natural one. At the same time I am

- not at all unaware that with this undertaking I am

placing myself in some contradiction with widespread
notions on the mathematical infinite and views held all
too frequently on the nature of numerical magnitude.

As far as the mathematical infinite is concerned: to
the extent that it has found justifiable use in science so
far and made a useful contribution, the mathematical
infinite has principally occurred in the meaning of a
variable magnitude, either growing beyond all limits
or diminishing to an arbitrary smallness, always,
however remaining finite. I call this infinite the non-
genuine-infinite (das Uneigentlich-unendliche).

Aside from this, in the modern and the con-
temporary periods, both in geometry and in particular
also in function theory, a different but equally justi-
fiable kind of infinity-concept has emerged. According
to this concept, in the investigation of an analytic
function of a complex variable, for example, it has
become necessary and in fact common practice to
imagine in the plane representing the complex
‘'variable a single point at infinity, i.e., an infinitely
distant but determinate point, and to investigate the
behavior of the function in the neighborhood of this
point in the same way as in the neighborhood of any
other point. In this case it turns out that the behavior
of the function in the neighborhood of the infinitely
distant point exhibits exactly the same behavior as at
any other point lying in the finite, so that from this we
can derive that we are fully justified in imagining the
infinite in this case to be located at a wholly deter-
minate point. . 4

When the infinite occurs in such a determinate form,
I call it genuine-infinite (Eigentlich-Unendliches) .

Both these manifestations of the mathematical
infinite — in both of which it has effected the greatest
progress in geometry, in analysis, and in mathe-
matical physics — will be kept quite distinct to facili-
tate the understanding of what follows.

In the first form, as the non-genuine-infinite, it
presents’ itself as a variable finitude ; in the other
form, what I call the genuine-infinite, it occurs as an
utterly determinate infinite. The infinite real whole
numbers — which I will define in the following, and to
which I was led already many years ago without it
entering distinctly into my consciousness that in them



I possessed concrete numbers having a real meaning
— have absolutely nothing in common with the first of
these two forms, the non-genuine-infinite. On the
contrary, they have the same character of deter-
minateness which we met with in the case of the infin-
itely distant point in analytic function théory: they
therefore belong to the forms and affects of the
genuine-infinite.

While, however, the point at infinity in"the complex
number plane stands isolated vis-a-vis all finite points,
we obtain not only a single infinite whole number but
rather an infinite sequence of such numbers, which
are quite distinct from one another and stand in lawful
number-theoretic relationships both to one another
and to the finite whole numbers. These relationships
are not even in principle reducible to relationships
among finite numbers; the latter phenomenon does in
fact occur frequently with respect to the different
intensities and forms of the non-genuine-infinite — for
example, with respect to functions of a variable x
becoming infinitely small or infinitely large, and
where they possess determinate finite orders (ordinal
numbers) of becoming-infinite ( des Unendlich-
.werdens ). Such relationships can indeed be regarded
only as veiled ratios of the finite, or at any rate, as
immediately reducible to the latter. The laws govern-

ing the genuinely-infinite whole numbers to be defined
 are, on the contrary, entirely different from the depen-
dency relationships which obtain in the finite realm;
this does not, however, preclude that the finite real
numbers themselves may undergo certain new
determinations with the help of the determinately-
infinite numbers.

The two principles of generation (Erzeugungs-
prinzipe) with whose aid, as it will turn out, the new
determinate infinite numbers are defined, are such
that through their unified effect every barrier re-
specting the process of concept formation for real
whole numbers can be broken through. Happily,
however, they are opposed, as we shall see, by athird
principle, which I call the inhibiting or limiting
principle, by means of which certain limits will be
successively imposed upon the actually endless for-
mation process, so that we obtain natural segments in
the absolutely infinite sequence of the real whole
numbers, segments which I call number-classes.

The first number-class (1) is the aggregate of the
finite whole numbers

LY

which is followed by the second number-class (II)
consisting of certain infinite whole numbers following
each other in determinate succession. Only after the
second number-class has been defined do we arrive at
the third, then the fourth, and so on.

7

First of all, the introduction of the new whole
numbers appears to me to be of the greatest signifi-
cance for the development and sharpening of the
power concept -(Machtigkeitsbegriff) introduced in
my papers (Crelle’s Journal, Vol. 77, p. 257; Vol. 84, p.
242) and frequently used in the earlier numbers of this
essay. In accordance with this, there corresponds to
each well-defined aggregate a determinate power, so
that the same power will be ascribed to two aggre-
gates if they can be coordinated to one another
reciprocally, univocally, element for element (one-to-
one mapping).

In the case of finite aggregates the power commdes
with the number (Anzahl) of elements since in any
arrangement such aggregates have, as is well known,
the same number of elements.

In the case of infinite aggregates, on the other hand,
absolutely nothing has so far been said, either in my
own papers or elsewhere, concerning a precisely

~defined number of their elements ; however, it was

possible to ascribe even to infinite aggregates a
determinate power completely independent of thezr
arrangement.

The smallest power of infinite aggregates had to be
ascribed, as was easily justified, to those aggregates
which can be reciprocally, univocally coordinated to
the first number-class, and thus have the same power
as the latter. On the other hand, an equally simple,

-natural definition of the higher powers was lacking.

Our above-mentioned number-classes of the deter-
minately infinite real whole numbers now prove them-
selves to be the natural uniform representatives of a
lawful sequence of ascending powers of well-defined
aggregates. I will demonstrate definitively that the
power of the second number-class (II) is not only
different from the power of the first number-class, but
that it is in fact the next higher power; we can thus
call it the second power, or the power of the second
class. In the same fashion the third number-class
yields the definition of the third power, or the power of
the third class, and so on. ‘

Section 2

Another great gain attributable to the new numbers,
to my mind, is a new concept not previously in
existence, the concept of the number of elements of a
well-ordered infinite manifold. Since this concept is
always expressed by an entirely determinate number
of our expanded number-field, assuming only that the
order of the elements of the aggregate — to be defined
more closely below — is determined; and since, on the
other hand, the concept of the number of elements
(Anzahlbegriff) has an immediate objective represen-
tation in our inner intuition; therefore through this
connection between number of elements (Anzahl) and
number (Zahl), the reality of the latter, which I have
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emphasized, is proven even in cases where it is deter-
minately infinite.

By a well-ordered aggregate we understand any
well-defined aggregate, the elements of which are
bound together by a specifically pre-assigned law of
succession, according to which there exists both a first
element of the aggregate and there follows after every
single element (which is not the last in the sequence)
.another specific element, much as to any arbitrary
finite or infinite aggregate of elements there corres-
' ponds a specific element which, respecting all of

them, is the next-following element in the sequence
(except if no element exists which follows all of

them in the sequence). Two “well-ordered’’ aggre-
gates are now said to be of the same number (with
respect to their pre-assigned laws of succession) if it is
possible to put them into a reciprocally univocal
correspondence with each other, so that if K and Fare
any two elements of the one, £, and F, the
corresponding elements of the other, the position of E
and F inthe succession of elements in the first aggre-
gate is always in correspondence with the position of
Fand F, in the succession of elements in the second
aggregate. Thus if F precedes F in the succession of
elements of the first aggregate, then E, also precedes
F in the succession of elements of the second aggre-
gate. It is easily seen that this correspondence, if
possible at all, is always an entirely determinate one,
and since in the extended number sequence there is
always found one and only one nu.nber a so that the
same number (Anzahl) of numbers (Zahlen) (from}
on) precedes it in the natural succession, it is
necessary to set the “number” of these two “‘well-
ordered’’ aggregates directly equal to'«i, if & is an
infinitely large number, and equal to the number
directly preceding « (orea-1),if « is a finite whole
number.

The essential difference between finite and infinite
aggregates is now shown: a finite aggregate exhibits
the same number of elements for every order of
succession that can be given to its elements; on the
other hand, different numbers of elements will in
general have to be attributed to aggregates consisting
of infinitely many elements, depending upon the order
of succession given to the elements. The power of an
aggregate is, as we have seen, an attribute in-
dependent of the order of the elements. Thenumber of
elements of an aggregate, however, shows itself to be
a factor generally dependent upon a given order of
succession of the elements as soon as we are dealing
with infinite aggregates. There nonetheless exists,
even in the case of infinite aggregates, a certain
connection between the power of the aggregate and
the number of its elements determined by a given
order of succession.

If, to begin with, we take an aggregate which is of
the power of the first class, and assign to its elements

an arbitrary but fixed order of succrssion so that it
becomes a ‘‘well-ordered’”’ aggregate, then the
number of its elements will always be a specific
number of the second number-class, and can never be
determined by a number other than one belonging to
the second number-class. On the other hand, any
aggregate of the first power can be ordered in such a
way that the number of its elements with respect to
this order becomes equal to an arbitrarily pre-
assigned number of the second number-class. We can
express these propositions as follows: Every aggre-
gate of the power of the first class is countable by

- numbers of the second number-class, and only by

means of such numbers. In particular, we can always
assign an order of succession to the elements of the
aggregate so that with respect to this order it is
counted by an arbitrarily pre-assigned number of the
second number-class, which number gives us the
number of elements of the aggregate with respct to
that succession.

The analogous laws hold for the aggregates of
higher powers. Thus every well-defined aggregate of
the power of the second class is countable by num-
bers of the third number-class, and only by those; in
particular we can always assign an order of suc-
cession to the elements of the aggregate so that in this
order of succession the aggregate is counted* by an
arbitrarily pre-assigned number of the third number-
class, which number determines the number of:

elements of the aggregate with respect to that order of |
succession, '

Section 3

The concept of the well-ordered aggregate proves
fundamental for the theory of manifolds as a whole. To
the law that it is always possible to put every well-
defined aggregate into the form of a well-ordered
aggregate — a law of thought which seems to me to be
basic and consequential and, because of its general
validity, especially remarkable — I will return in a
later treatise. Here I limit myself to the proof of how
the concept of the well-ordered aggregate yields in the
simplest fashion the basic operations for the whole
numbers, be they finite or determinately infinite, and
how the laws for these operations are adduced from .
immediate inner intuition with apodictic certainty. If,
to. start with, we are given two well-ordered aggre-
gates M and M,,to which the numbers « and $
correspond as numbers of their elements, then

"y
What so far in the earlier numbers of this essay I have called
‘“‘countable’’ is, according to the now introduced and at the
same time sharpened and generalized definition, nothing but
countability through (by means of) numbers of the first class
(finite aggregates) or through (by means of) numbers of the
second class ( aggregates of the first power)



is again a well-ordered aggregate, which results when
we posit the aggregate M and, following it, the aggre-
‘gate M , uniting M, with M. Thus there also
corresponds to the aggregate

M+ M,

with respect to the resuiting order of succession of its
elements, a specific number as the number of its ele-
ments; this number is called thesuym of a and 8 and
written as ’

¢+ B .

| Here it becomes immediately apparent that if & and
f are not both finite, then in general

¢+ B

is different from

B+«

Thus the commutative law already fails to be
generally valid in the case of addition. It is now suf-
ficiently simple to form the concept of the sum of
several summands given in specific sequence, where
this sequence itself may be determinately infinite, so
that I need not go into this more specifically here.
Thus I merely remark that the associative law proves
generally valid. In particular we have

«+ B+ 7)) =+ + 7

If we take an ordered sequence determined by a
number of equal and equally ordered aggregates,
where in each case the number of elements is equal to
o, then we obtain a new well-ordered aggregate
whose corresponding number of elements yields the
definition for the product o where g is the
multiplier, « the multiplicand. Here again we find
that in general P« is different from af , so that the
commutative law is also in general invalid for the
multiplication of numbers. The associative law, on the
other hand, is generally found to be valid in the case of
multiplication as well, so that we have

e(By) = (ef)y.

Certain of the new numbers stand out from the
others by the fact that they have the property of prime
numbers; this property, however, must here be
characterized in a somewhat more determinate
manner, by understanding a prime number to be a
number a for which the decomposition

“=ﬁ7:
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whereg is the multiplier, is only possible if

=1

or

B =«

On the other hand, the multiplicand will, in general,
even in the case of prime numbers «, have a certain
range of uncertainty which because of the nature of
the case is unavoidable. In a later treatise we will
nonetheless show that the decomposition of a number
into its prime factors can always be achieved in an
essentially unique manner which isdeterminate even
with regard to the sequence of factors (so far as these
are not finite prime numbers occurring next to each
other in the product). In this way two different kinds of
determinately infinite prime numbers come to the
fore, the first of which more closely resembles the
finite prime numbers, whereas the prime numbers of
the second kind have a complétely different charac-
ter.

Furthermore, with the aid of these new insights it
will now be possible for me to present in the near
future a rigorous substantiation of the theorem on the
so-called linear infinite manifolds, presented at the
end of the treatise, “A Contribution to the Theory of
Manifolds’’ (Crelle’s Journal, Vol. 84, p. 257).

In the previous number (4) of this essay I adduced
for point-aggregates P which are contained in an n-
dimensional continuous region a theorem which,
making use of the new earlier-defined mode of ex-
pression can be stated as foliows: “If P is a point-
aggregate whose derivitive Pt vanishes iden-
tically, where « is an arbitrary whole number of the
first or second number-class, then the first derivative

P, and thus also P itself is a point-aggregate of the
power of the first class.”” I find it highly remarkable
that this theorem can be inverted as follows: “If P isa
point-aggregate whose first derivative [/’ has the
power of the first class, then there are whole numbers
e which belong to the first or the second number-class,
for which P% vanishes identically and so that, of the
numbers « for which this phenomenon occurs, one of
them is the smallest one.” '

In response to the friendly invitation of my highly
esteemed friend, Professor Mittag-Leffler in Stock-
holm, I will in the near future publish the proof of this
theorem in the first volume of the new mathematical
journal which he is now editing. As a sequel, Mr.
Mittag-Leffler will publish an essay in which he will
show how, on the basis of this theorem, his and
Professor Weierstrass’ investigation on the existence
of univocal analytic functions with given singularities
may receive consiaerable generalization.
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Section 4

The extended sequence of whole numbers can, if
need be, be completed without difficulty to a con-
tinuous number aggregate by adjoining to every whole
number « all real numbers x that are greater than

zero and smaller than one. -

Perhaps this will now raise the question of whether,
since a certain extension of the real number field to
the infinitely large has been achieved in this manner,
we might not with equal success define certain infin-

“itely small numbers or, what would amount to the
same thing, finite numbers which do not coincide with
the rational and irrational numbers (which appear as
limits of sequences of rational numbers), but which

" might be inserted into supposed gaps between the real
numbers, much as the irrational numbers are inserted
into the chain of the rational numbers, or as the
transcendent® numbers are inserted into the struc-
tures of the algebraic numbers.

The question of the establishment of such in-
terpolations, to which some authors have devoted a
great deal of effort, can in my opinion (and as I shall
show) first be answered clearly and distinctly with the
aid of our new numbers, and in particular on the basis
of the general number-of-elements-concept of well-
ordered aggregates. Previous efforts, it seems to me,
are grounded in part on an erroneous confusion of the
non-genuine-infinite with the genuine-infinite, and in
part were carried out on a totally insecure and shaky
foundation.

Modern philosophers have often called the non-
~ genuine-infinite a ‘‘bad’’ infinite, in my opinion, un-
justifiably so, since it has proved to be a very good,
highly useful instrument in mathematics and the
‘natural sciences. The infinitely small magnitudes, to
my knowledge, have so far been worked out for useful
purposesonly in the form of the non-genuine-infinite,
and as such are capable of all those variations,
modifications, and relationships which find applica-
tion and expression in infinitesimal analysis as well as
in function theory, in order to there form the basis of a.
rich abundance of analytical truths. On the other
hand, all attempts to transform the infinitely small by
force into a genuinely infinitely small magnitude
should finally be abandoned as purposeless. If
genuinely infinitely small magnitudes exist in any
other form at all, i.e., are definable, still they surely
do not have any immediate connection with the or-
dinary magnitudes that become infinitely small.

In opposition to the above-mentioned experiments
with the infinitely small, and to the confusion of the
two forms of appearance of the infinite, an opinion is
frequently presented concerning the essence and
meaning of numerical magnitudes, according to
which no numbers can be assumed as really existing

other than the finite real whole numbers of our
number-class (I).

At most the rational numbers which immediately

spring from them are granted a certain reality.

However, the irrational numbers supposedly have a
merely formal significance in pure mathematics, in
that they, so to speak, serve only as computing devices
to fix the attributes of groups of whole numbers, and to
describe them in a simple and unified way. The true
material of analysis, according to this view, consists
exclusively of the finite real whole numbers, and all
truths found in arithmetic and analysis, or still
begging discovery, are presumably to be regarded as
relationships among finite whole numbers: infinitesi-
mal analysis and function theory are regarded as
legitimate only in so far as their theorems are
provably interpretable as laws governing finite whole
numbers. This view of pure mathematics, even though
I cannot agree with it, undoubtedly has certain advan-
tages which I would like to stress here. Not the least
among the circumstances that speak for its signifi-
cance is the fact that among its proponents are found
some of the most meritorious contemporary math-
ematicians.

If, as is assumed here, only the finite whole numbers
are real, while all of- the others are nothing but
relational forms, then it can be demanded that the
proofs of analytical theorems be checked for their
“number-theoretic content,” and that every gap
which appears in them be filled in, in accordance with
the principles of arithmetic; in the feasibility of such
augmentation is seen the true touchstone for the
genuineness and the perfect rigour of the proofs. It
cannot be denied that in this way the formal proof of
many theorems has been perfected, and also that
certain other improvements in the different parts of
analysis can be effected. Following the principles
flowing from this view can also be seen as a way of
safeguarding against all kinds of absurdities and
errors.

In this way a certain principle, even if a rather dry
and obvious one, has been set, which is recommended
as a guideline to all. It is intended to contain the flight
of mathematical speculation and conceptualization
within its true limits, where it runs no danger of falling
into the abyss of the ‘“‘transcendent,’”’ the place where
supposedly, as is said in order to inspire fear and
wholesome terror, ‘“all is possible.”’” Be that as it may,
who knows whether it was not precisely the viewpoint |
of utility alone which determined the originators of
this view to recommend it, as an effective regulative
principle for protection against all error, to the
soaring powers which so easily endanger themselves

~ through arrogance and lack of moderation, even

though a fruitful principle cannot be found therein.

g



For I cannot accept the assumption that the
originators of this view themselves, in the discovery of

new truths, started from these principles; no matter -

how many.good things I may cull from these maxims,
I must strictly speaking regard them as erroneous ; no
real progress stems from them, and if things had
really happened precisely in accordance with them,
then science would have been retarded or, at any rate,
confined within the narrowest of boundaries. Happily,
things are not really that bad, and the praise for as
well as the adherence to these (under circumstances
and assumptions) useful rules has never been taken
all that literally. Also, conspicuously enough, there
has not until now been anybody, so far as I know, who
would have undertaken to formulate them better and
more completely than I have attempted to here.

If we look at it historically, we find that similar
views have frequently been held, and already occur
with Aristotle. As is well known, we find that through-
out the Middle Ages among all of the scholastics,
“infinitum actu non datur’’ (‘‘the actual infinite does
not exist’’) presents itself as an incontestable proposi-
tion taken over from Aristotle. However, if we look at
the reasons which Aristotle (2) advances against the
real existence of <he infinite (cf., e.g., his
Metaphysics , Book XI, chapter 10), we find that in the
main, they can be traced to a premise that involves a
petitio principii, viz. the premise that only finite
numbers exist, which he arrived at on the basis that
only counting procedures with respect to finite aggre-
gates were known to him. I believe, however, that I
have proved above that similarly definite counting
procedures as are carried out in the case of finite
aggregates can also be carried out respecting infinite
aggregates, assuming we provide a definite law for
these aggregates in accordance with which they are
transformed into well-ordered aggregates. This will
- become still clearer in the course of this treatise.

That without such a lawful succession of the ele-
ments of an aggregate no counting can be carried out
within it — this lies in the nature of the concept of
counting. Even in the case of finite aggregates,
counting can be-carried out only if there exists a deter-
minate sequence of the counted elements. However, it
appears here as a special property of finite aggregates
that the result of the counting — the number of
elements — is independent of the respective order-
ings; while in the case of infinite aggregates, as we
have seen, such independence does not, in general,
obtain. Rather the number of elements of an infinite
aggregate is an infinite whole number co-determined
by the law of counting; in this and in this alone lies the
essential distinction between the finite and the in-
finite, which has its basis in nature itself, and thus can
never be removed. Nevermore, however, will it be
possible to deny the existence of the infinite on account
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of this difference, while on the other hand maintaining
that of the finite; if we drop the one then we must also
get rid of the other. Where then would we come to on
this road?

Another argument used by Aristotle against the

reality of the infinite consists in the assertion that the

finite would be dissolved into the infinite and
destroyed, if the latter existed, since the finite number
allegedly is annulled by an infinite number. The truth

" of the matter, as we shall-clearly see in the following,

is that we can very well adjoin a finite number to an
infinite number (if the latter is thought of as deter-
minate and complete) and unite the finite number
with the infinite number without bringing about the
annulment of the former. (On the contrary, the infinite
number will be modified through such an adjoinment
of a finite number to it.) Only the reverse process, the
adjoinment of an infinite number to a finite one, when
the latter is posited first, brings about the annulment
of the finite number without a modification of the
infinite number occurring.

This actual state of affairs concerning the finite and
the infinite, which Aristotle wholly misunderstood,
should produce new impulses not only in analysis, but
also in the other sciences, in particular the natural
sciences. ‘

The idea of considering the infinitely large not only
in the form of the unlimitedly increasing magnitude
and in the closely related form of convergent infinite
series — first introduced in the 17th century — but to
also fix it mathematically by numbers in the definite
form of the completed infinite, was logically forced
upon me,.almost against my will since it was contrary
to traditions which I had come to cherish in the course
of many years of scientific effort and investigations.
Thus I do not believe that reasons could be advanced
against it which I would not know how to counter.

Section 5

When just now I spoke of traditions, I understood
these to be not merely traditions in the narrower sense
of something one has lived through; rather, I trace
them back to the founders of modern philosophy and
natural science. For the evaluation of the question at
issue here, I list just some of the most important
sources. Compare:

Locke, Essay on Human Understanding, lib. I1, ch.
XVIand XVII.

Descartes, Letters and Explanations on his Medita-
tions ; alsoPrincipia 1,26,

Spinoza, Letter XXIX; Cogitata Metaphysica , parts
Iand II. .

Leibniz, Erdmann edition, pp. 138, 244, 436, 744:
Pertz edition II, 1 p. 209; III, 4 p. 218; 111, 5 pp. 307, 322,
389; II1, 7p. 273. '

(Also noteworthy are: Hobbes, De Corpore , Chapter
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VII, II; Berkeley, Treatise on the Principles of Human
Knowledge, 128-131.)

Stronger reasons against the introduction of infinite
whole numbers than are found in these sources, taken
together, can hardly be devised even today; thus they
should be examined and compared with my argu-
ments. I postpone for another occasion a detailed
and thorough discussion of these passages and, in
particular, of the extremely significant and weighty
letter by Spinoza to L. Meyer, limiting myself here to
the following. .

As different as the doctrines of these writers may
be, in the cited passages their judgment concerning
the finite and the infinite essentially agrees in this that
to the concept of a number belongs its finitude and
that, on the other hand, the true infinite or absolute,
which is in God, admits of no kind of determination. As
far as the latter point is concerned, I entirely agree:
(how could it be different?), for to my mind the propo-
sition, ‘“‘omnis determinatio est negatio’’ (all deter-
mination is negation”) is unquestionably true. How-
ever, the former point as I already said above in the
discussion of the Aristotelian reasons against the
“infinitum actu,’’ 1 see as involving a petito principii,
which explains several contradictions which occur in
all of these authors, notably Spinoza and Leibniz. The
assumption that apart from the absolute — unreach-
able by any determination — and the finite, no modifi-
cations can exist which, though not finite, are nonethe-
less determinable by numbers and consequently are
what I call the genuine-infinite — this assumption I do
not find justified by anything; indeed, in my opinion, it
contradicts certain propositions advanced by the
latter two philosophers. What I maintain and believe I
have proved in this paper as well as in my earlier en-
deavors is that after the finite there is a transfinitum
(which also could be called suprafinitum), i.e., an un-
limited gradation of determinate modes which in their
nature are not finite but infinite, yet which, much as
the finite, can be determined by determinate, well-de-
fined and distinguishable numbers. 1 am convinced,
therefore, that the domain of definable magnitudes is
not limited to the finite magnitudes; accordingly, the
limits of our cognition may be extended further with-
out it being necessary to do any kind of violence to our
nature. In place of the Aristotelian-scholastic proposi-
tion discussed in Section 4 I thus pose the different
one:

“Omnia seu finita seu infinita definita sunt et ex-

cepto Deo ab intellectu determinari possunt.”” (“‘All

things, whether finite or infinite, aredefinite and, with
the exception of God, can be determined by the in-
tellect.”’) (3)

Quiteoftenthefinitude of the human understandingis
adduced as a reason why only finite numbers are
thinkable; however, I again see in this assertion the

above-mentioned circular inference. For by ‘‘finitude
of the understanding’’ is tacitly meant that the
capacity of the understanding in respect of the forma-
tion of numbers is limited to finite numbers. If it
should turn out, however, that the understanding in a
certain sense is also able to define infinite, i.e.,
transfinite (iiberendliche) numbers and distinguish
them from one another, then either the words “‘finite
understanding’’ must be given an extended meaning,
after which that inference can then no longer be drawn
from them; or else the human understanding must
also be granted the predicate ‘‘infinite’’ in certain
respects; which, in my considered opinion, is the only
correct thing to do. The words ‘‘finite understanding”’
which one hears on so many occasions are, as I
believe, in no way on the mark. As limited as human
nature may in fact be, much of the infinite nonetheless
adheres to it, and I even think that if it were not in
many respects infinite itself, the strong confidence
and certainty regarding the existence (des Seins) of
the absolute, about which we are all in agreement,
could not be explained. And in particular, it is my view
that human understanding has an unlimited, inherent
capacity for the step-wise formation of whole number-
classes which stand in a definite relationship to the
infinite modes and whose powers are of ascending
strength.

The main difficulties in the outwardly different but
inwardly nonetheless closely related systems of the
two last-named thinkers can, I believe, be brought
closer to solution in the way I have chosen, and a
number of them can even now be satisfactorily solved
and cleared up. These are difficulties which in part
gave rise to the later doctrine of criticism
(Kritizismus), which with all its advantages does not
appear to me to offer a sufficient substitute for even
the inhibited development of the doctrines of Spinoza
and Leibniz. For side by side with, or in place of, the
mechanistic explanation of nature, which within its

. sphere has all the tools and advantages of math-

ematical analysis available to it, but whose one-
sidedness and insufficiency have so pointedly been
laid bare by Kant, not even the beginning of an organic
explanation of nature, equipped with the same math-
ematical rigor but transcending the mechanistic one,
has been developed. Such an organic explanation
can, I believe, be approached only through a resump-
tion and furthering of Spinoza’s and Leibniz’s works
and endeavors.

One especially difficult point in the system of
Spinoza is the relationship of the finite modes to the
infinite modes; it remains unresolved why and under .
what circumstances the finite as against the infinite,
or the infinite as against the more strongly infinite,
can maintain its independent existence (Selbstindig-
keit). The example, already touched upon in Section 4,



seems 10 me in its unassuming symbolism to mark the
way in which we can perhaps get closer to the solution
of this question. ‘

If w is the first number of the second number-class,
then we have |

14+ 0= a;,
on the other hand,
@+ 1= (0+1),
 where
(@ +1)

is an entirely different number than w. Thus, as one
can clearly see here, everything depends upon the
position of the finite vis-a-vis the infinite. If the former
comes first, then it merges with the infinite and
disappears in it; if, however, it contents itself and
takes its place behind the infinite, then it is preserved
and joins with the former to become a new, because
modified, infinite.

Section 6

If it should cause difficulties to comprehend
infinitely large, closed whole numbers, comparable
among each other and with the finite numbers, linked
to each other and to the finite numbers by fixed laws:
then these difficulties will be associated with the
perception that, while the new numbers in many ways
have the character of the earlier ones, in many more
respects, however, they have a specific nature
altogether their own — which often even causes it to
happen that different characteristics are found joined
together in one and the same number, characteristics
which are disparate in the case of finite numbers.and
never occur together. Thus in one of the passages cited
in the previous section we find the considerations that
an infinite whole number, if it existed, would have to
be both an even and an odd number, and since these
two characteristics cannot occur jointly, therefore no
such number exists. |

It is apparent that the tacit assumption made here is
that characteristics which are disjointed in the case of
conventional numbers must also have this relation-
ship to each other in the case of the new numbers, and
from this the impossibility of the infinite numbers is
deduced. Who would not be struck by the paralogism
here? Is not every generalization or extension of
concepts associated with the giving up of particular
determinations, and in fact unthinkable without it? Is
it not only in recent times that the idea has been
grasped which is so important for the development of
analysis and leads to the greatest advances — the
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introduction of complex magnitudes, without
regarding as a barrier the fact that they can be called
neither positive nor negative? And it is only a similar
step which I dare take here; perhaps it will even be
considerably easier for the general consciousness to
follow me than it was possible to make the transition
from the real to the complex numbers. For the new
whole numbers, even if they stand out above the
conventional numbers by a more intensive, sub-
stantive determinateness, nonetheless as ‘“number-of-
elements”’ (‘“Anzahlen’’) share with these the same
kind of reality; whereas difficulties stood in the way of
the introduction of complex magnitudes until, after
great efforts, their geometric representation by points
or line segments in a plane had been found.

To come back briefly to that train of thought about
evenness and unevenness, we again take a look at the
number w in order to demonstrate, by means of this
number, how those characteristics which in the case
of finite numbers are incompatible can here occur
jointly, without any contradiction. In Section 3 the
general definitions for addition and multiplication are
put forth, and I have stressed that in the case of these
operaiions the commutative law is in general not
valid; in this I see an essential distinction between the

. infinite and the finite numbers. It should also be ob-
served that in a product 8a I regard 8 as the

multiplier, o as the multiplicand. The following two
forms for w are then immediate:

and

ﬁ]=1+ﬁ)'2.

Accordingly, w can thus be regarded both as an even
and as an odd number. From a different point of view
(viz., if 2 is taken as multiplier) it could also be said,
however, that w is neither an even nor an odd number
since, as is easily proved, w is not representable
either in the form 2 orinthe form

12 ¢+ 1

Thus the number w has indeed, in comparison to the
conventional numbers, a very specific nature of its
own, since it combines all these characteristics ‘and
qualities. More peculiar still are the remaining
numbers of the second number-class, as I shall dem-
onstrate later on.

Section 7

Even though in Section 5 I presented many quotes
from Leibniz’s works in which he expresses himself in
opposition to the infinite numbers, saying among other
things: ‘“There is no such thing as an infinite number,
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nor line or other infinite quality, if we take them as
authentic wholes’’: “The true infinite is nota modifica-
tion, it is the absolute; on the contrary, as soon as we
modify or limit ourselves, we give shape to a finite”
(where in the case of the latter passage I agree with
him, on the first statement but not on the second). On
the other hand, I am in the fortunate position to be able
to point out statements by the same author in which, in
a certain sense in contradiction with himself, he ex-

presses himself in the most unambiguous fashionin

favor of the genuine-infinite (which is different from
the absolute). Thus in Erdmann, p. 118, he says:

I am so much for an actual infinity, that instead of
admitting that nature abhors it, as it is vulgarly
claimed, I hold that it is everywhere disposed towards
it in order to better bring out the perfections of its
Author. Therefore, I do not think that there is any part
of matter wdiich is not, I do not say divisible but ac-
tually divided, and consequently the slightest particle
must be seen as a world full of an infinity of different
creatures.

However, the genuine-infinite as we encounter it, for
example in the case of well-defined point aggregates,
or in the constitution of bodies out of point-like atoms
(I do not mean here the chemical-physical, or
Democritean, atoms, because I cannot regard them as
existent either in concept or in reality no matter how
many useful things have up to a certain limit been
accomplished by means of this fiction), has found its
most decisive defender in a philosopher and mathem-
atician of our century with a most acute mind, Bern-
hard Bolzano, who has developed his views relevant
to the subject especially in the beautiful and substan-
tial essay, (Paradoxesofthe Infinite). (Leipzig,
1851). It is the purpose of this essay to demonstrate

that the contradictions which skeptics and peripa-

“tetics of all times have tried to find in the infinite do
not exist at all, if only one takes the trouble (which, of
course, is not always altogether inconsiderable) to
internalize the concepts of infinity in all seriousness
and in accordance with their true content. We there-
fore also find in this essay a discourse which in many
respects is right on the mark on the subject of the
mathematical non-genuine-infinite as it occurs in the
form of differentials of the first and higher order, or in
the infinite sums of series or in other limiting
processes. This kind of infinite (called ‘‘syncategor-
ematic - infinite’’ by some scholastics) is a mere
auxiliary and relational concept (Beziehungsbegriff)
of our thinking. According to its definition it includes
the notion of variability and thus the ‘““datur’’ (‘‘it is
given’’) can never be said of it in the true sense.

It is quite remarkable that with regard to this kind
of infinite there exists absolutely no essential differ-
ence of opinion even among contemporary philoso-
phers, if I may be permitted to ignore the fact that

certain modern schools of so-called positivists or
realists (4) or materialists believe that in this syn-

categorematic infinite, which they themselves must

admit has no genuine being, they see the highest

concept .

However, in Leibniz we already find the essehtially
correct state of affairs stated in many places; the
following passage, for example (Erdmann, p. 436),

‘refers to this non-genuine-infinite:

When 1 speak philosophically, I no more establish
magnitudes infinitely small than infinitely large; no
more infinitesimal than infinitudinal. But, as ex-
peditious modes of speaking, I consider both notions to
be mental fictions appropriate for calculation, as are
the imaginary roots in algebra as well. At the same
time, I have shown that these expressions have great
use as short cuts in the thought process as well as for
invention and cannot be a source of error, inasmuch as
it is permissible to substitute for the infinitely small as
small a magnitude as one wants such that error would
be less than a given quantity, whence it follows that
error cannot be introduced.

Bolzano is perhaps the only one who, to a certain
extent, assigns the genuine-infinite numbers their
rightful place; they are frequently spoken of at any
rate. However, the actual way in which he deals with
them, without being able to advance any kind of real
definition of them, is something about which I am not
at allin agreement with him, and I regard for example
Sections 29-33 of that book as unfounded and
erroneous. The author lacks both the general concept
of power and the precise concept of number-of-

elements for a real conceptual grasp of determinate-
infinite numbers. Both occur with him in germinal

fashion in a number of places, in the form of special-
ities: it seems to me, however, that he does not work
through towards full clarity and distinctness, and this

~ explains many non sequiturs and even several errors

contained in this valuable essay.

I am convinced that without the two concepts men-
tioned, there will be no progress in the theory of
manifolds, and the same is true, I believe, of those
fields which depend upon the theory of manifolds or
are most intimately in. touch with it, for example
modern function theory on one hand and logic and the
theory of knowledge on the other. When I conceive of
the infinite as I have done here and in my earlier at-
tempts, I derive true pleasure (to which I gratefully
yvield) from seeing how the whole concept of number,
which in the finite only has the background of number-
of-elements, in a certain sense splits up into two
concepts when we ascend to the infinite: that of power,
which is independent of the order given to an aggre-
gate, and that of number-of-elements, which is
necessarily tied to a lawful ordering of the aggregate



by means of which the latter becomes a well-ordered
aggregate. And when I decend again from the infinite
to the finite, I see just as clearly and beautifully how
the two concepts again become one and flow together
to form the concept of the finite whole number.

Section 8

We can speak of the reality or the existence of the
whole numbers, both the finite and the infinite ones, in
two senses; however, these are the same two ways, to
be sure, in which any concepts or ideas can be con-
sidered. On the one hand we may regard the whole
numbers as real insofar as they take up a very definite
place in our mind (Verstand) on the basis of
definitions, become clearly differentiated from all the
other components of our thinking, stand in definite
relations to them and thus modify the substance of our
mind (Geist) in a definite way. Let me call this type of
reality of our numbers their intrasubjective or im-
manent reality (5). Then again we can ascribe reality
to numbers insofar as they must be regarded as an
expression or image of occurrences and relationships
in the external world confronting the intellect, further,
insofar as the different number-classes (I), (II), (III),
and so on represent powers, which in fact occur in
corporeal and mental nature. This second type of
reality I call the transsubjective or transient reality
of the whole numbers. |

Given the thoroughly realist — simultaneously,
however, no less idealist — foundation of my investi-
gations, there is no doubt in my mind that these two
types of reality will always be found together, in the
sense that a concept to be regarded as existent in the
first respect will always in certain, even in infinitely
many ways, possess a transient reality as well (6).
Admittedly, the determination of this reality
generally is among the niost troublesome and difficult
tasks of metaphysics and frequently it must be left to a
time when the natural development of another science
reveals the transient significance of the concept in
question.

This coherence of the two realities has its true

foundation in the unity of the all, to which we ourselves
belong as well.

This coherence is referred to here in order to deduce
from it what appears to me to be a most important
consequence for mathematics, namely that mathe-
matics in the shaping of its conceptual material need
take into account solely and uniquely the immanent
reality of its concepts and thus is under no obligation
whatsoever to also test these concepts with respect to
their transient reality. Because of this distinguished
position, which differentiates mathematics from all

other sciences and offers an explanation for the rela-
tively easy and unconstrained manner of pursuing it,
it quite specifically deserves the name of free
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mathematics, a designation to which, if I had the
choice, I would give preference over the, now
customary ‘“‘pure’’ mathematics. |
Mathematics is entirely free in its development,
bound only by the self-evident concern that its con-
cepts be both internally without contradiction and

stand in definite relations, organized by means of
definitions, to previously formed, already existing and
proven concepts. (7) In particular, in introducing new
numbers mathematics is obliged only to give such
definitions of them as will lend them the kind of
determiniteness and, under certain circumstances,
ther kind of relationship to the older numbers, which
in a given case will definitely permit them to be
distinguished from one another. As soon as a number
satisfies all these conditions, mathematics can and
must regard it as existant and real. Here I see the
reason, suggested in Section 4 why the rational,
irrational and complex numbers should be regarded
just as much as existent as the finite positive whole

numbers.
I believe that it is not necessary to fear, as many do,

that these principles contain any danger to science. On
one hand the designated conditions under which the
freedom of the formation of numbers can alone be
exercised, are such that they leave extremely little
room for arbitrariness. And then every mathematical
concept also carries within itself the necessary
corrective; if it is unfruitful and inapt this is soon
demonstrated by its uselessness, and it will then be
dropped because of its lack of success. Any super-
fluous confinement of mathematical research work,
on the other hand, seems to me to carry with it a much
greater danger, a danger that is so much the greater
as there is really no justification for it that could be
dedu: zd from the essence of the science, for the

essence of mathematics lies precisely in its freedom.
~ If this quality of mathematics had not presented

itself to me for the reasons mentioned, still the whole
development of the science itself, as we perceive it in
our century, would necessarily lead me to exactly the
same views.

If Gauss, Cauchy, Abel, Jacobi, Dirichlet, Weier-
strass, Hermite, and Riemann had been bound to
constantly subject their new ideas to metaphysical
control, then we would not be able to rejoice in the
magnificent structure of modern function theory,
which, while designed and erected entirely freely and
without transient purposes, nonetheless has already
revealed its transient significance in applications to
mechanics, astronomy, and mathematical physics, as
was to be expected. We would not have seen Fuchs,
Poincaré and many others bring about the great
forward thrust in the theory of differential equations if
these excellent intellects had been hemmed in and
constricted by extraneous influences; and if Kummer
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had not taken the liberty, rich in consequences, of
introducing the so-called ‘ideal’” numbers into
number theory, we would not today be in the position

to admire the very important and excellent algebraic -

and arithmetical works of Kronecker and Dedekind.
As justified, therefore, as mathematics is to move
entirely free from all metaphysical fetters, I do not
find it possible on the other hand to grant the same
right to ‘‘applied’” mathematics, for example
analytical mechanics or mathematical physics. These
disciplines, in my opinion, are metaphysical both in
- their foundations and in their goals; if they try to free
themselves from this, as has been proposed of late by
a famous physicist, they degenerate into a
“‘description of nature’’ which must lack both the
fresh breeze of free mathematical thought and the
power of the explanation and exploration (Erklarung
und Ergriindung ) of natural phenomena.

Section9 | |
Given the great significance which attaches to the so-

called real, rational, and irrational numbers in the
theory of manifolds, I would not want to neglect to say

here what is most important concerning their defini-
tion. I will not go into the introduction of the rational
numbers more closely, since rigorously arithmetical
presentations of this have frequently been formulated.
Among the ones close to my own view I call special at-

tention to those of H. Grassmann, Lehrbuch der Arith-

metik (Berlin 1861) and J.H.T. Mueller, Lehrbuch der
Allgemeinen Arithmetik (Halle 1855). Yet I want to
briefly discuss in more detail the three forms known to
“me, probably esse}ltially the only major forms, of the
rigorously arithmetical introduction of the general
real numbers. These are first, the mode of intro-
duction which has been followed for many years by
Prof. Weierstrass in his lectures on analytic functions,
of which a few hints can be found in Herr E. Kossak’s
programmatic treatise Die Elemente der Arithmetik
(Berlin 1872).Second , Herr. R. Dedekind, in his essay
Stetigkeit und Irrationale Zahlen (Braunschweig
1872), has published a peculiar form of definition, and
third, I put forth a form of definition in the year 1871
( Mathematische Annalen, Vol. 5, p. 123) which ex-
ternally bears a certain resemblance to the Weier-
strass definition, so that it was possible for Herr H.
Weber ( Zeitschrift fiir Mathematik und Physik, 27th
year, Historical Literature Division, p. 163) to confuse
it with the latter. In my opinion, however, this third
form of definition, which later was also developed by
Herr Lipschitz, (Grundlagen der Analysis, Bonn 1877),
is the simplest and most natural of all, and has the
advantage that it is most immediately adapted to the
analytic calculus.
Part of the definition of an irrational real number is
always a well-defined infinite aggregate of the first

power of rational numbers; this is the common
characteristic of all forms of definition. Their differ-
ence lies in the generative moment ( Erzeugungs-
moment) through which the aggregate is tied to the
number it defines, and in the conditions which the
aggregate must satisfy in order to be a suitable basis
for the number definition in question.

In the case of the first definition, an aggregate of
positive rational numbers «, , denoted by (a,)), is
taken as a basis, which satisfies the condition that no
matter how many or which of a finite number of a,
are summed up, this sum always remains below a
specifiable bound. If now we have two such aggre-
gates ( a, ) and ( @, ), then it is rigorously shown that

they can preSent three cases: either every part: %of

unity is always contained equally often in both aggre-
gates so long as a sufficient, augmentable, finite
number of their elements are summed up; or, from a

. 1, L. .
certain non,—is always contained more frequently in

the first aggregate than in the second; or thirdly, from

. 1, .
a certain non, . is always contained more frequently
S

in the second than in the first. In accordance with
these occurrences, if b and b’ are the numbers to be

defined by means of the two aggregates ( a, ) and
(a, ), thenin the first case we set

b =1V,
in the second

b >V,
in the third

b < V.

If the two aggregates are joined together in a new one

(ay, ),

then this provides the basis for the definition of
b + b’ ; -

if, however, we form of the two aggregates (a, ) and
( a,/ ) the newone

’

(av « Qy ))

the elements of which are the products of all the a,,
and all the a* .



then this new aggregate is taken as a basis for the
definition of the product bb’. |

We see that here the generative moment which ties
the aggregate to the number to be defined by it, lies in
the formation of sums ; however, it has to be stressed
as essential that only the summation of an always
finite number of rational elements is utilized so that
the number b to be defined is not already posited
from the outset as the sum

2a,

of the infinite series (¢, ); this would embody a
logical mistake since, on the contrary, the definition of
the sum

Za,

is attained only by setting it equal to the completed
number b which must of necessity already have been
defined in advance. I believe that this logical mistake,
which was first avoided by Herr Weierstrass, was
committed almost universally in previous times, and
not noticed because it belongs among those rare cases
in which actual mistakes cannot cause any significant
damage to the calculus.

I am nonetheless convinced that all the difficulties
which have been found in the concept of the irrational
are linked to this mistake, whereas when this mistake
is avoided, the irrational riumber will implant itself in
our mind with the same determinateness, dlStlnCt-
ness, and clarity as the rational number.

Herr Dedekind’s form of definition takes as its basns
- the entirety of all rational numbers, partitioned into
two groups in such a way that, if the numbers of the
first group are denoted by Ay , those of the second

group by B-#_ , then always

A, < By

Herr Dedekind calls such a partition of the rational
number aggregate a ‘‘cut’’ of the latter, denotes it by

(a,1B,),

and associates a number b with it. If we compare two
such cuts

(A,1B,)
and
I(A'vl B'u) ,

we find that just as in the first form of definition there
exist altogether three possibilities in accordance with
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which the numbers p and b’ represented by the two
cuts are posited as equal to each other, or as

b> 0,

or as

b <V

The first case, apart from certain easily adjustable
exceptions which occur in the case of the being-
rational ( Rationalsein) of the numbers to be defined,
takes place only in the case of the total identity of the
two cuts, and in this the undeniable, decisive prefera-
bility of this form of definition over the two others
comes to the fore, that to each number b there
corresponds a unique cut. This, however, is counter-
balanced by the great disadvantage, that in analysis

numbers never present themselves in the form of

“cuts,” into which form they must first be brought
with great skill and trouble.
Here, as well, the definitions for the sum

- b4
and the product
bl

follow on the basis of new cuts arising from the two
given ones.

The disadvantage attaching to thefirst and thethird
form of definition — that here the same, i.e. equal,
numbers present themselves infinitely often so that an
unambiguous overview over the entirety of the real
numbers is not immediately obtained — can be
removed with the greatest of ease through speci-

| fication of the base aggregates ( n, ), by drawing on

any one of the well-known unique system formations
such as the decimal system or simple continued-
fraction expansions (Kettenbruchentwickelung).

I come now to the third form of the definition of real
numbers. Her« igain an infinite aggregate of rational

- numbers (v, ) of the first power is taken as a basis;

however, a different character is demanded of it than
in the Weierstrass form of definition. I postulate that
after the choice of an arbitrarily small rational
number € a finite number of members of the aggre-

- gate can be separated off, so that those remaining

have pairwise a difference which in absolute terms is
smaller thane . Every such aggregate ( «, ) which

can also be characterized by the postulate

Lim (g~

r=»n

”I') — “
(for arbitrary ©)

1 call afundamental series (Fundamentalreihe), and
associate with it a numberb to be defined by it and for
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which the sign ( «,’) itself could even be fittingly used,
. as was proposed by Herr Heine, who after numerous
discussions had come to agree with me on these
‘questions. (Cf. Crelle’s Journal, vol. 74, p. 172). Such a
fundamental series, as can rigorously be deduced
from the concept, presents three cases: either its
‘members a, are, for sufficiently large values of »,
smaller in absolute terms than an .arbitrarily pre-
assigned number; or from a certain v on, the latter
are larger than a definitely determinable positive
rational number ¢ ; or from a certain » on, they are
smaller than a definitely determinable negative

rational magnitude -g. In the first case I say that b is.

equal to zero, in the second that b is greater than zero

or positive, in the third that b is smaller than zero or-

negative.

Now come the elementary operations. If (¢, ) and
( a,’ ) are twefundamental series by means of which
the numbers b and b are determined, it then turns out
that

(o, - a',)
and

(as - ay)

are also fundamental series, which thus determine
three new numbers. These serve as definitions for the
sum and difference

b+
and the product
b" b .

If in addition b is different from zero, the definition
of which has been given above, then it can be proved

that )
a‘l’
()

1

is also afundamental series whose associated number
provides the definition for the quotient

LA

b

The elementary- operations between a number b
given by a fundamental series ( ¢, ) and a directly

given rational number a are included in the operations

just established, by letting

’

a, = a, b’ =a

Only now come the definitions of the equality, the
being-smaller, and the being-greater of two numbers
b and " (of which I’ can also equal «). In particular

" we say that
b=
or
| D>
or
b <V,
according to whether |
b=

is equal to Zéro or greater than or smaller than zero.
After all these preparations we get as the first

rigorously provable theorem that if b is the number

determined by a fundamental series ('@, ), then, with
increasing v

b — a,
will become smaller in absolute terms than any

conceivable rational number, or, what is the same,
that

Lim a, = b.

=0

It would be well to observe this cardinal point, whose
significance could easily be overlooked: in the case of

‘thethird form of definition it is not at all true that the

number b is defined as the ‘‘limit’’ of the members «,
of a fundamental series ( a,"). This would be a logical
mistake similar to that pointed out in the discussion of
the first form of definition, for the reason that then the’
existence of the limit |

Lim q,

r=ce

would be presumed. Rather, the opposite is the case,
so that by means of our preceding definitions the
concept b has been furnished with properties and with
relations to the rational numbers such that it can be
concluded with logical certainty:

| Lim a,

Y=



exists and is equal to b. May I be forgiven my
thoroughness, which I motivate with the perception
that most people pass by this unpretentious detail and
then easily get entangled in doubts and contradictions
with respect to the irrational which, by observing the
particulars emphasized here, they could have been
spared entirely, for they would then recognize clearly
that the irrational number, by virtue of the character-
istics given to it by the definitions, is just as definite a
reality in our mind as the rational number, even as the
whole rational number, and that one need not first
obtain it by a limiting process but on the contrary —
through its possession one is convinced of the feasi-
bility and evident admissibility of the limiting
processes. (8) For now the just-adduced theorem is

- easily extended to yield the following: If ( b,)) is any

aggregate of rational or irrational numbers such that
Y= o

(whatever ¢ may be),

then there is a numberb determined by a fundamental
series ( @, ) such that

Lim b, = b.

Y=

- Thus it turns out that the same numbers b, which on
the basis of fundamental series (a,») (I call these
fundamental series of the first order) are defined in
such a way that they prove to be limits of a, , are also
in manifold ways representable as limits of series
('b, ), where each b, is defined by a fundamental
series of the first order

(@) (with fixed v),

I therefore call such an aggregate ( b, ), if it has the
property that

Lim (b,44 — b,) = 0 (for arbitrary u )

Y=o

a fundamental series of the second order.

Similarly, fundamental series of the third,
fourth,...nth order, and fundamental series of the « th
order can also be formed, where ¢ is an arbitrary
number of the second number-class. _‘

All these fundamental series accomplish exactly the
same thing for the determination of a real number b as
the fundamental series of the first order, the only
difference consisting of the more complicated and
broader form in which they are given. It nonetheless
seems to me highly appropriate, provided that one
wants to assume the standpoint of the third form of
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definition at all, to fix this difference in the form
noted, as I have done in similar fashion in the cited
works ( Mathematische Annalen, Vol. V, p. 123).
Therefore, I now use the followmg mode of ex-
pression: the numerical magnitude b is given by a
fundamental series of the nth or, respectively, the « th
order. If we decide upon this, we achieve an extra-

“ordinarily free-flowing and simultaneously compre-

hensible language, enabling us to describe the
richness of the multiform and often so complicated
webs of analysis in the most simple and distinctive
manner, through which, in my opinion, a gain in
clarity and transparency is attained which should not

be underestimated. In this I oppose the misgivings
which Herr Dedekind voiced ir the preface to his

essay Continuity and Irrat:onal Numbers (Stetigkeit
und Irrationale Zahlen) concerning these distinctions.
It was the farthest thing from my mind to introduce
through the fundamental series of the second, the
third order, etc.,new numbers which are not already

. determinable through fundamental series of the first

order; rather, I was merely focusing on the con-
ceptually distinct forms of the being-given ( des
Gegebenseins) of the numbers. This clearly flows
from particular parts of my paper itself.

In regard to this I would like to call attention to a
remarkable circumstance. These orders of funda-
mental series, distinguished by me through numbers
of the first and second number-classes, exhaust any
and all conceivable forms of the usual series-
character — whether analysis has already discovered
them or not — in the sense that fundamental series,
the number of whose order might be denoted by a
number of the third number-class, actually do not
exist, as I shall rigorously prove on a dlfferent oc-
casion.

Now I will attempt to explain in brief the appro-
priateness of the third form of definition.

To denote the fact that a number b is given on the
basis of a fundamental series (¢, ) of any ordern or
o , I will use the formulas

b -r\J (ev)
or

(ey) oV b.

If, for example, a convergent series with the general
member ¢, is given, then the necessary and sufficient
condition for convergence (as is well-known) is:

m (¢4 + - -+ ) =0
= (for arbitrary u ).

Thus the sum of the series is defined through the
formula
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[

Sen(3e)

n=y n=0

If, for example, all ¢, are defined on the basis of
fundamental series of the kth order, then the same is
true for

P

—
Cn

=)

’

and we meet here with the sum

)

3.

n=0
as defined by a fundamental series of the (k+1)th
order.

If, for example, the thought-content of the proposi-
tion ' :
sin (}) = 1

is to be described, we could think of ’;
powers as given by the formulas:

‘ 2m—-1
1‘_ [0 (a'), (ﬂ) m . (alam-l-l)’

and its

2 2
where for burposes of abbreviation we put
v

(—1n*
2 2nf1

a,.
n—=0

Furthermore, we have

. (‘?—)21“4-1
i (3) | X = 0 o )

m=0

. /
sin { ™
(%)

is defined on the basis of a fundamental series of the
second order, and by means of that proposition is
expressed, therefore, the equality of the rational
number 1 and of a number

T
sin {5

given on the basis of a fundamental series of the
second order.

In similar fashion the thought-content of more
complicated formulas — as, for example, those of the
theory of theta-functions — can be described with
precision and relative ease, whereas the reduction of
infinite series to series formed solely of rational
members, and in particular of members with the
same sign throughout, and which converge absolutely,

i.e.,

is generally extremely involved. Here in the case of
the third form of definition, in contrast to the first, this
matter is entirely avoided, so long as we are dealing
not with numerical approximations of sums of series
through rational numbers, but only with absolutely
sharp definitions of the latter. To me, the first form of

definition indeed appears not to be as easily usable', if

~what is at issue is the precise definition of the sums of

series, which do not converge absolutely; for which,
on the contrary, the arrangement of both its positive
and its negative numbers is definitely prescribed.
However, even for series with absolute convergence,
it will be possible to actually establish the sum (even
though the latter is independent of the arrangement)
only if a definite arrangement is given. Therefore
even in such cases it is tempting to give preference to
the third form of definition over the first. Finally, it
seems to me that its capacity for generalization to the

case of transfinite numbers speaks for the third form

of definition, while such an extension of the first form
of definition is entirelyimpossible . The difference lies
simply in this, that for transfinite numbers the
commutative law is in general already invalid for
addition; the first form of definition, however, is in-
separably bound up with this law — it stands and falls
with it. However, for all types of numbers where the
commutative law of addition is valid, the first form of
definition (with the exception of the points referred to)
proves to be quite outstanding.

Section 10

The concept of the ‘‘continuum’’ has not only played
a significant role in every aspect of the development of
science, but also has always called forth the greatest
differences of opinion and even vehement contro-
versies. This may be due to the fact that the idea upon
which this concept is based has taken on a different
content in its appearance for the dissenting, for the
reason that the exact and complete definition of the
concept was not transmitted to them. Perhaps,
however — and this is to me the most probable reason
— the Greeks who may have first grasped the idea of
the continuum had already not conceived of it with the
clarity and completeness which would have been
required to preclude the possibility of different inter-
pretations by those that followed them. So we see that
Leucippus, Democritus, and Aristotle view the con-
tinuum as a compound which consists ex partibus sine
fine divisibilibus (of parts divisible without limit),
whereas Epicurus and Lucretius compose ( zusam-
mensetzen) the continuum out of their atoms con-
sidered as finite things. From this there subsequently
grew a great dispute among the philosophers, some of
whom followed Aristotle, others Epicurus. Still others,



in order to stay away from this dispute, decreed along
with Thomas Aquinas (9) that the continuum
consisted neither of infinitely many nor of a finite

number of parts, but of no parts at all. This latter -
opinion seems to me to contain less of an explication

than a tacit confession that one has not gotten to the
bottom of the matter and prefers to genteelly get out of
its way. Here we see the medieval-scholastic origin of
a view which still finds advocates today, according to
whom the continuum is an indivisible concept or else,

as others express it, a pure a priori intuition An- -

‘schauung) which is hardly accessible to deter-
mination through concepts. Eyvery attempt at arith-
metical determination of this mysterium is viewed as
an impermissible intervention and rebuked with
proper vehemence; thereby timid souls get the im-
pression that we are not dealing with a mathematical-
logical concept in the case of the ‘“‘continuum,” but
rather with a religious dogma . ‘ |
Far be it from me to conjure up these disputes
again; also, there would be no room for a more exact
" discussion of them in this narrow framework. I see
myself obliged only to develop the concept of the
continuum here as briefly as possible, in as logically
sober a fashion as I must grasp it and as I need it in the
theory of manifolds, and, also, only in respect to the

mathematical theory of aggregates. This treatment

was not so easy for me, for among mathematicians
whose authority I like to call upon, hot a single one has

dealt closely with the continuum in the sense that I am

. inneed of here. :
Indeed, taking one or several real or complex

continuous magnitudes (or, what I take to be the more

correct expression, continuous sets of magnitudes) as
a basis, the concept of a continuum depending on them
either univocally or multivocally — i.e., the concept of

a continuous function — has been shaped out in the

‘best possible way and in the most varied directions. In

this way the theory of the so-called analytic functions,

as well as of the more general functions with their
highly remarkable characteristics (such as non-
differentiability and similar things), has come into
being. However, the independent continuum itself has
merely been presupposed by the mathematical
authors in that most simple manifestation and has not
been subjected to any more thorough consideration.
First of all I must explain that, in my opinion, the
enlistment of the concept of time or of the intuition of
time in the discussion of the much more fundamental
and more general concept of the continuum is not in
order. It is my judgment that time is a notion ( Vor-
stellung) which for its clear explication presupposes
the concept of continuity, which is independent of it,
and even with the aid of this cannot be grasped, either
objectively as a substance or subjectively as a
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necessary a priori form of intuition. Rather time is
nothing but an auxiliary and relational concept by
means of which the relation between different motions
occurring in nature and perceived by us is deter-
mined. Such a thing as objective or absolute time
exists nowhere in nature, and therefore time cannot be

' regarded 'as a measure of motion. Rather, in fact,

could the latter be regarded as a measure of time, if
that were not objectionable on the grounds that time,
even in the unassuming role of a subjectively
necessary a priori form of intuition, has not exactly
experienced prosperous and undisputed success, even
though since Kant it would not have lacked the time to
do so. ' |

Similarly, 1 am convinced that absolutely nothing
can be made of the so-called form of intuition of space
to gain insight into the continuum, since with space,
too, much as with the objects thought of as contained
in it, it is only with the help of a conceptually already
completed continuum that the kind of contents can be
achieved through which they can become the object
not of mere aesthetic contemplation, or of philo-
sophical sharp-wittedness, or "of inaceurate com-
parisons, but of sober and exact mathematical investi-
gations. : '

Thus I am left with no choice but to attempt, with the
aid of the real number concepts defined in Section 9, as
general as possible a definition of a purely arith-
metical concept of a point-continuum. As a basis for

this I choose — what else? — the n-dimensional plane
of arithmetical spate G,, i.e., the embodiment {n-
begriff) of all value-systems

(@ 12y | - | &),

in which every x, independently of the others, can take
on all real number-values from — o¢ to + 9©.Every
particular such value system I call an arithmetical
point of G». The distance of two such points is defined
by the expression

+V @ — e F @ — @) o (@ — &)

and by an arithmetical point aggregate P contained in
(., we understand any lawfully given embodiment of
points of the space (G,. The investigation thus aims to
devise a sharp and at the same time as general as
possible a definition of when P is to be called a con-

 tinuum.

. 1have proved in Crelle’s Journal (Vol. 84, p. 242) that

‘all spaces G,, no matter how large the so-called

number of dimensions »' may be, have the same power
and consequently have the same power as the linear
‘continuum, thus for example as the totality of all real
numbers of the interval (0... 1). The investigation and
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‘determination of the power of G, therefore reduces to
th‘e same question for the special case of the interval
(0...1), and I hope that already quite soon I will be able
to answer this question, by means of a rigorous proof,

to the effect that the sought-after power is none other

than that of oursecond number-class (II). From this it
will follow that all infinite point aggregates P either
have the power of the first number-class (I) or the
power of the second number-class (II). It will also be
possible to draw from this the further consequence,
that the totality of all functions of one or several
variables which are represented by a preassigned
infinite series-form, no matter which, also only
possesses the power of the second number-class and
therefore is countable by means of numbers of the

third number-class (III). (10) This theorem will
therefore be applicable to, for example, the totality of

all “analytic] functions, i.e. functions of one or
several variables generated through continuation of

convergent power series, or the set of all functions of -

one or several real variables which are representable
by trigonometric series. o

In order to close in now on the general conceptof a
continuum contained in G, let ud recall the concept of
the derivative (Ableitung)I’Wof an arbitrarily given
point aggregate P, first found in the paper in Mathem-
atische Annalen, Vol. 5, and here developed further
and expanded into the concept of a derivative-P",
where % can be any whole number of one of the
number-classes (I), (II), (II1), etc.

It is also possible now to divide the point aggregate
P into two classes according to the power of their first

derivative PM _If P has the power of (I), then it

turns out (as I have already said in Section 3 of this
paper), that there exists a first whole number « of the
first or second number-class (II) for which' P@
vanishes. If, however, P® : has the power of the
second number-class (II), then it is always possible, in
one and only one fashion, to partition PV} into two
aggregatesR andS such that |

v R4S,

where R and S have an extremely different character:

R is such that through the repeated derivation
process it is capable of continued reduction up to the
point of annihilation, so that there always exists a first
whole number + of the number-classes (I) or (II) for
which

w0

-~
kY

I call such point aggregates reducible.
S, on the other hand, is such that in the case of this

point aggregate the process of derivation produces '

absolutely no change, in that

- “irreducible’” is the same as

S =iz SM
and éoné_eque’ntly also ~.
 S= v

‘this kind of aggregate S I call perfect point aggre-
gates. Thus we can say: if. P is of the power of the
second number-class (II), then P decomposes into
a definite reducible and a defmlte perfect point
aggregate. -

Even though these two predicates, “‘reducible’’ and

““perfect,” cannot occur jointly in one and the same
point aggregate, it is still, however, not the case that
‘‘perfect,”” just as
“‘imperfect’’ is not exactly the same as “reducible,”
as a certain amount of attention will easily show.

The perfect point aggregates S are by no means
always in their interior what I have called in my
above-mentioned papers ‘‘everywhere dense.”
Therefore they are not yet by themselves suitable for
a complete definition of the point continuum, even if it
must be admitted immediately that the latter must
always be a perfect aggregate. |

Rather, an additional concept is required in order to
define the continuum jointly with the previous one,
viz. the concept of a connected (zusammenhéingend)
point aggregate T

We call T a connected point aggregate if for any
two points ¢ and t’ of the latter and for a pre-assigned
arbitrarily small number ¢ , there always exists a
finite number of points

by tyy - o0 b

of T-in multiplé ways, so that the distances

ttl’ tlt2’t2t3J L tgt’

are all smaller than &.
All known geometrical point continua now also fall
under this concept of the connected point aggregate,

~as is easily seen. I also believe, however, that with

these two predicates, ‘‘perfect’’ and ‘‘connected,”’ I
have come across the necessary and sufficient
characteristics of a point continuum, and I therefore
define a point continuum within (G, as a perfectly-
connected aggregate. (12) Here ‘‘perfect’” and

- “‘connected” are not mere words, but entirely general
predicates of the continuum, conceptually character-

ized in the sharpest possxble manner by the precedmg
definitions.

The Bolzano definition of the continuum
(Paradoxes, Section 38) is certainly incorrect; it one-

" isidedly expresses only one property of the continuum,

which is however also satisfied by aggregates which



result from G, if one imagines any ‘‘isolated” point
aggregate (cf. Mathematische Annalen, Vol. 21, p. 51)
as removed from G,. Similarly, it is satisfied in the
~case of aggregates which consist of several separate
continua; clearly in such cases no continuum is
present,.even though according to Bolzano this would
be the case. Thus we see here a violation of the
maxim:‘“To the essence of any thing belongs that
which when given necessarily posits the thing and
when subtracted necessarily annihilates it; or that
without which the thing — or vice versa, that which
without the thing — can neither be nor be conceived.”

Similarly, it also appears to me that in the essay of
Herr Dedekind (Continuity and Irrational Numbers)
only onedifferent property of the continuum has been
stressed one-sidedly, viz. the property which it shares
with all “‘perfect’’ aggregates.

Section 11

It shall now be demonstrated how one is led to the
definitions of the new numbers, and in what fashion
the natural segments in the absolutely infinite real
whole number-sequence, which I call number-classes,
come about. To this discussion I will then add only the
principal theorems about the second number-class
and its relationship to the first. The sequence (I) of the
positive real whole numbers

1)2:3;"':1’:"‘

has the basis of its generation in the repeated positing

and uniting of basic units which are regarded as
equal: the number v is the expression both for a
definite finite number of such consecutive positings,
as well as for the unification of the posited units into a
whole. The formation of the finite whole real numbers
thus rests on the principle of the addition of a unit to an
existing, already formed number. I call this moment,
which, as we shall see presently, also plays an
essential role in the generation of the higher whole
numbers, the first principle of generation. The
number (Anzahl) of the numbers v of class (I) to be
formed in this way is infinite, and there is no greatest
one among them. As contradictory as it would be,
therefore, to speak of a greatest number of class (1),
there is, on the other hand, nothing objectionable in
conceiving of anew number — we shall call it © —
which is intended to be-the expression for the fact that
the totality (I) as a whole be given in its natural and
lawful succession (similar to the way in which » is an
expression for the fact that a certain finite number of
units is unified into a whole). It is even permissable to
think of the newly created number @ as a limit toward
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which the numbers » tend, if by that nothing else is

" understood than that o is to be the first whole number

which follows all the other numbers v, i.e., is to be
called greater than every one of the numbers v. By
letting the positing of the number « be followed by
further positings of unity we obtain, with the help of
the first principle of generation, the further numbers

fl)—i—l,ﬁ.)'—*—:},"

RO IR L

since here again no greatest number is reached, we
conceive of a new one, which can be called 2w and
which is to be the first number following all previous
numbers » and w# v, If the first principle of genera-
tion is applied repeatedly to the number 2 «;, then we
arrive at the continuation

) 20+ 1,204+2, - 204 v, -
of the previous numbers.

The logical function which has given us the two
numbers o and 2 w is obviously different from the
first principle of generation; I call it the second
principle of generation of whole real numbers, and
define it more closely to the effect that if any definite
succession of defined whole real numbers is given of
which there is no greatest, then on the basis of this
.second principle of generation a new number is
created, which can be thought of as a limit of those
numbers, i.e. can be defined as the next greater
number to all of them. =

By combined application of the two principles of
generation one thus successively obtains the following
continuations of the numbers attained by us so far:

3w, 3w +1, -, 30 4 v, -+

Hm’ya).l_l,..., H_m+y’...

However, even this does not bring the matter to a
close, since of the numbers
peo 4 v

likewise none is the greatest.

The second principle of generation therefore in-
duces us to introduce a next-following number to all
the numbers

po -+ v

which can be called ®? . This is followed in definite
succession by numbers

Aot 4 po 4 v,
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and then, by adhering to the two principles of genera-
tion, we arrive at numbers of the following form:

v ot + v st . Vy—10 + Vu;

but then immediately the second principle of genera-
tion drives us to the positing of a new number which is
to be the next greater to all of these numbers and is
appropriately denoted by

mﬁ‘)

As can be seen, there is no end to the formation of
new numbers: in adhering to the two principles of
generation we again and again obtain new numbers
and number series of an entirely determinate suc-
cession. - ,

Therefore it at first appears as ‘if in this mode of
formation of new, whole, determinately infinite num-
bers we would have to lose ourselves in theunlimited
and that we would be incapable of bringing this end-
less process to a certain preliminary close, through
which to gain a similar limitation to that which, with
respect to the older number-class (I), in a certain
sense actually existed. There we only made use of the
first principle of generation and consequently step-
ping out of the series (I) was impossible. The second
principle of generation, however, not only had to lead
beyond the number field given up ‘o now, but indeed
proves itself to be a means which, in conjunction with
the first principlc of generation, provides the capacity

to break through every boundary in the concept for-

mation of the real whole numbers.

If we now recognize, however, that all numbers
obtained so far and the ones .initially following them
satisfy a certain condition, then this condition, when
put forth as a demand to be met by all numbers to be
formed initially, proves to be a new third principle,
joining the other two, which I call the inhibiting or
limiting principle and which, as I shall show, has the
effect that the second number-class (II), in whose
definition it is utilized, not only gets a higher power
than (I), but in fact exactly the next higher, i.e.,
second power.

The mentioned condition, which, one immediately
convinces oneself, is satisfied by all of the infinite

numbers « defined so far, is — that the aggregate of-

numbers preceding this number in the number

sequence is of the power of the first number-class (I) .

If, for example, we take the number
T g

then the numbers preceding it are contained in the

formula:

Vot - v @4l 4 .. + vu o + v,

r.

where

My Vo, Viy o 0t Vu

have to take on all finite, positive, whole number-
values including zero and excluding the combination:

‘voﬂ'vl.—-:---ﬂ‘]}‘u=0.

' As is well known, this aggregate can be put into the
form of a simply infinite series and thus has the power
of (I). ‘ o ' ‘ ,

Since furthermore every sequence of aggregates, of
which each is of the first power, always yields another
aggregate which has the power of (I), it is clear that in
the continuation of our number sequence we actually
initially again and again get only such numbers for
which that condition is in fact satisfied.

We. thus define the second number-class (II) as the
totality of all numbers « capable of being formed with
the aid of the two principles of generation and
progressing in definite succession:

w,0+1,. - v,0t 4 vt 4.
+1}Fﬂlw+v#,.--,wm,--o,aoo.

which are subject to the condition that all numbers
preceding « , from 1 on, form an aggregate of the
power of the first number-class (I).

Section 12

‘The first thing we now have to demonstrate is the
theorem that the new number-class (II) has a power
which is different from that of the first number-class
(D). | | o

This theorem results from the following theorem:

C‘If

a]’ia2’_- . ., a"’ s e

is any aggregate of the first power of different num-
bers of the second number-class, so that we are
justified in taking it as given in the simple series form
(@, ), then either one of these numbers , say y , is the
greatest. Or if this is not the case, then there exists a

«definite number g of the second number-class (II) not

occurring among the numbers «, so that. g/is greater
than all «, while on the other hand every whole
number §'< 8 is exceeded in size by certain numbers
of the series (o, ). The numbers p or 8 respectively
can properly be called the upper limit of the aggregate
(ay).”

‘The proof of this theorem is simply the following:
Let @, be the first number occurring in the series
(@,) whichis greaterthan e, , «,, thefirstoccurring



number greater than «.,, and so on.
We then have

T <oy <ty <y <o -

@ < &y << “x3< ax4< -
and
“V < ax;:
as long as

v < K.

Now here it can happen that from a certain number
®xq on, all following numbers in the series ( «,) are

smaller. Then obviously this number is the greatest

one of all, and we have: y = ax,. Alternatively, think
of the aggregate of all whole numbers from 1 on which
are smaller than «,, add to this aggregate first the
aggregate of all whole numbers = &, and < ax,,
then the aggregate of all numbers which

2> Oxy

and
< 2N

and so on. In that way is obtained a specific section of

successive numbers of our first two number-classes,
and, in particular, this number aggregate is obviously
of thefirst power. Thus there exists (according to the
definition of (II) ) a definite number § of the totality
(II), which is the next greater one for those numbers.
Hence ' '

B> a
and therefore also
B> a,
since
X2

can always be taken great enough so that it becomes
greater thana pre-assigned 7 and since at that point

C Uy < “xz'

On the other hand it can easily be seen that every
number

B <8
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is exceeded in size by certain numbers
“"v .

and with this all parts of the theorem have now been
proved.

From this now follows the theorem that the entirety
of all numbers of the second number-class (II) does
not have the power of (I). Otherwise we could think of
the whole totality (II) in the form of a simple series

at’“2,"‘)“v,'.‘

which according to the just-proved theorem would
either have a greatest number 7%, or else, respecting
the size of all its members

oy

would be exceeded by a certain number 8 of (II). In
the first case the number ‘

y + 1,

would belong to class (II); in the second case the
number f would on the one hand belong to class (II)
and, on the other hand, would not occur in the series

(@)

which, given the presupposed identity of the aggre-
gate (II) and

()

is a contradiction. Consequently the number-class (II)
has a different power than the number-class (I).

That of the two powers of the number classes (I) and
(II) the second is really the next following one to the
first, i.e., that between the two powers there exist no
others, follows with certainty from a theorem which I

" shall staté and prove presently.

However, if we first take a look backwards and

‘recall the means which led both to an extension of the

real whole number concept and also to a new power,
different from the first, of well-defined aggregates,
there were three logicar moments, standing out and
distinguishable from one another, which were
operative. They are the two principles of generation
defined above and in addition an inhibiting or limiting
principle, which consists of the demand to undertake
the creation of a new whole number with the help of
one of the other two principlesonly when the entirety
of all preceding numbers has the power of a defined
number-class already existing to its full extent.
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Thus by observing these three principles, one can
most reliably and conclusively arrive at ever new
" number-classes and, along with them, at all the dif-
ferent, successively .ascending powers existing in
corporeal and mental nature, and the new numbers so
obtained will then always be of utterly the same
concrete determinateness and objective reality as the
earlier ones. I therefore truly do not know what should
keep us from this activity of forming new numbers, as
soon as it is demonstrated that introducing a new one
of these innumerable number-classes into considera-
tion has become desirable or even indispensable for
the progress of science.

Section 13

I now come to the promised proof that the powers of
() and (I1) immediately follow each other so that no
other powers lie in between.

If from the totality (II) one selects according to an
arbltrary law an aggregate ( « ) of different numbers

o | i.e., conceives of an arbxtrary aggregate (')
contained in (I1), then such an aggregate always has
characteristics which may be expressed in the
following theorems:

“Among the numbers of the aggregate ( «” ) there is
always a smallest one.’

“If in particular we have a sequence of numbers of
the totality (II):

Byy Cyy = vy Oy sty

which constantly decrease in size (so that
oy > oy

when
B >p),

then this series necessarily breaks off at a finite
number of members and closes with the smallest of
the numbers; the series can not be an infinite one.”

It is remarkable that this theorem — which is im-
mediately clear if the numbers are finite whole
numbers — can also be proved for infinite numbers
o3 . Indeed, according to the previous theorem,
which easily follows from the definition of the number-
series (II), there exists a smallest number among the
numbers «, , if one takes into account only those
numbers for which the index v is finite. If this, say,

=“Q’

then it is plausible that, because

Oy > Oy 41,

the series a, and consequently also the whole series
®s must consist of exactly ¢ members,’ and
therefore is a finite serles |

One now obtains the fundamental theorem:

“If ( & ) is any number-aggregate contained in the
totality (1I), then only the following three cases can
occur: either ( &) is a finite totality, i.e. consists of a
finite number ( Anzahl) of numbers ( Zahlen); or
( &) has the power of the first class; or thirdly (")
has the power of (ID); Quartum non datur (there is no
fourth case).”

The proof can be carried out easily as follows: Let Q.-
be the first number of the third number-class (1II);
then all numbers o« of the aggregate (« ) are
smaller than £, since the latter is contained in (I1I).

Let us now imagine the numbers ¢ ordered ac-
cording to their size. Letting ¢, be the smallest one
among them,

Uy 4 l:

the next greater, and so on, one obtains the aggregate
( & ) in the form of a “‘well-ordered’” aggregate .,
where f runs through numbers of our natural ex-
tended number-series from ® on. Obviously here ﬁ

always remains smaller than or equal to ¢ and since

(I{g < .SZ,

therefore also

B < Q.

The number 8 thus cannot go beyond the number-
class (II), but remains within its domain. Therefore
only three cases can occur: either § remains below a
specifiable number of the series

o -+ v,

and so (a”) is a finite aggregate; or § takes on all
values of the series

w4 v
but remains below a specifiable number of the series
(ID, and so ( ") is obviously an aggregate of thefirst
power; or thirdly § also takes on arbitrarily large

“values in (II), and then! 8 runs through all numbers of

(1) ; in this case the totality ( «; ), i.e. the aggregate
( &), obviously has the power of (1D : q.e.d.

As the immediate result of the theorem just-proved
we now have the following:

“Given any well-defined aggregate M of the power
of the number-class (II) and any infinite partial



aggregate M of M, then either the totality M” can be
thought of in the form of a simply infinite series, or it
is possible to map the two aggregates M” and M onto
each other in reciprocally univocal fashion.”

“Given any well-defined aggregate M of the second
power, a partial aggregate M’ of M and a partial
aggregateM”’ of M’, and knowing that the latterM”’
can be mapped reciprocally univocally onto the first
M, then the second M’ can also always be mapped
reciprocally univocally onto the first and thus also
onto the third.”

Because of its connection with the preceding
theorems I stdte this last theorem here as based on the
assumption that M has the power of (II). Obviously it
_is also correct whenM has the power of (I). However,
it seems to me highly remarkable and I therefore
expressly stress the fact that this theorm has general
validity no matter what the power of the aggregate M
may be. I want to take this up more closely in a later
treatise and there identify the peculiar interest which
attaches to this general theorem.

Section 14

In conclusion I now want to consider the numbers of

the second number-class (II) and the operations which -

can be carried out with them. On this occasion,
however, I want to limit myself to the issues nearest at

hand, while reserving the publication of more

thorough investigations of the subject for a later date.
The operations of adding and multiplying I defined

generally in Section 1, and I have shown that for the

infinite whole numbers they are in general not subject

to the commutative but are subject to the associative

law. Therefore this is also true particularly for the
numbers of the second number-class. As to the

distributive law, it has general validity only in the
following form:

(a+ﬁ)y=a7+ﬁ?
(where ‘ .
«a+ 8, a, |
appear as multipliers), as is 1mmed1ately recogmzed
on the basis of i inner intuition.

Subtraction can be considered from two points of
view. If « and 8 are any two whole numbers,

a<ﬁ'

then it can easily be seen that the equation

¢+ E=4p
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always admits of one and only one solution for &, such
that & will be a number from (I) or (ID) if « and 8 are
numbers from (1I). Let this number be equal to

f— «.
If, however, one considers the equation:
E+a=4p

then it turns out that frequently this equation can in no
way be solved for £ . Such is the case, for example, for

the following equation:

Eto=o0+1
However, even in those cases where the equation

§+a=ﬁa

can be solved for £ it is often found that it is satisfied
by infinitely many number-values of § . Of these
different solutions, however, one will always be the
smallest one.

For this smallest root of the equation

E+a=4,

if the latter is soluble at all, we choose the designation

b_,

which thus is different in general from
ﬁ — &,
a number which always exists if only

a < f.

If furthermore between the whole numbers

B, o y

there exists the equation

ﬁ=?“,

(where p is the multiplier), then it is easily seen that
the equation

B=Eta

has no solution for £ other than
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ey

and in this case p is denoted by %
" On the other hand, the equation

B = «k

(where § is the multiplicand), if it can be solved for £
at all, often has several and even’ infinitely many
roots, of which, however, one is always the smallest
one. Let this smallest root satisfying the equation

1 =ag,

if the latter is solvable at all, be denoted by “,‘,,E

The numbers « of the second number-class are of
two kinds: ™ such « for which there is° a next-
preceding member in the series, which then is

these I call numbers of the first kind; 2) such « for
which there does not exist a next-preceding member
in the series, for which, therefore %

does not exist: these I call numbers of the second kind.
The numbers *

' 3 .
w, 20, 0"+ 0, o¥

for example, are of the second kind, whereas
o+1 0?4+ o4 2, o + 3

are of the fi_rst kind.
In accordance with this the prime numbers of the

second number-class, which I defined in general in .

Section 1, are also divided into prime numbers of the
second and of the first kind.

Prime numbers of the second kind, in the order of
their occurrence in the number-class (II), are the
following:

@, ov, o, o¥, ..., .
so that among all numbers of the form

o= vk vt 0 Y,

there exists only theone prime number of the second
kind. It should not, however, be concluded from this
relatively sparse distribution of the prime numbers of
the second kind that the totality of all of them has a

1
|

power less than the number-class (I1) itself. It is found

that this totality has the same power as (1I).
The prime numbers of the first kind are first of all

w41, @+ 1, ek, e

These are the only prime numbers of the first kind
which occur among the number just designated by ¢ ;
the entirety of all prime numbers of the first kind in

(ID) also has the pawer of (1I).

. The prime numbers of the second kind have a
quality which gives them a rather uncommon
character. If 4 is such a prime number (of the second
kind), then always

me =17

when « is any number smaller than %'. From this it
follows that if « and B are any two numbers both of
which are smaller than 7, then the product ¢f is
always smaller than 7 . '

Limiting ourselves at first to the numbers of the
second number-class which are of the form ¢, we find
for these numbers the following rules of addition and
multiplication. Let

¢:1;"m!‘+y1mﬂ—1+ K
§r== Qg0 4 @ o' 4 -+ + @1,

. where we assume v, and g, to be different from zero.

Addition,
D If
< 4,
then we have
¢+¢¥u
2) If
.. uw> 4,

thep we have ,
| % + P = vy 63# "I_ o _{_ Vy—2—1 032"{"1 .
+ (v‘u-—l "I‘ 90) C!JR' + 0, ﬁ)’l"ll + 92031—2 + e e +791_

3)Fory’=l£] |

94 v = (v, 4 o) 0* + g0t .-+ 0.

" Multiplication.

" DIf v, is different from zero, then we have



@ lp =7V, Cl).“"f"'l + v, ﬁjl“'i'l—-l + P -|— y#_lml-fl .
a7 ol T ey oD o 25 |
If

1=0,
A
then the last member on the right is

VF Q_O'

2) If
Vy = Og

then we have

S 1 _
¢w ey vo m#+ + ")1 w‘l+l 1 + .
-+ v @ttt = pot,

1

The decomposition of a number ¢ into its prime
f_actors is the following. If we have

@ = ¢ + ¢ - ot A« - - o 0T
where
B> S>> >y,

and
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Cyy Cyy°* * Co

are positive, finite numbers different from zero, then

[ 9 =co(@ s 1o, (whre e
Co— 1(”""*‘—”" + 1) ¢

if we further imagine

Coy €13 * * Cag—1 Co

to be decomposed into prime factors according to the
rules of the first number-class, then we have at that

point the decomposmon of g into prime factors; for .
the factors

¥ - 1

and @ are, as remarked above, themselves prime
factors. This decomposition of numbers of the form ¢
is uniquely determined, even with respect to the order
of succession of the factors, if one abstracts from the
commutability of the prime factors of the individual
numbers ¢ and if it is decreed that the last factor is to
be a power of @ or equal to one and that @ may be a
factor only in the last place. I will write about the
generalization of this decomposition into prime fac-
tors to arbitrary numbers « of the second number-
class (II) on a later occasion.

Author’s Notes

Oon Spction 1

(1) Theory of manifolds. With this word I designate a
doctrinal concept (Lehrbegriff) which encompasses a
great deal and which so far 1 have attempted to
develop only in the specific form of an arithmetical or
geometrical theory of aggregates. By a ‘“‘manifold’’ or
“aggregate’’ I generally understand every multi-
plicity which can be thought of as one, i.e., any totality
of definite elements which by means of a law can be
bound up into a whole, and I believe that in this I am
defining something which is related to the Platonic
eldog (eidos) or (8ém, (dea), as well as tothat
which Plato in his dnalogue ‘“‘Philebus or the Highest
Good”’ calls puntov (mikton ). He counterposes
this to the avr.stqov, “(apeiron), i.e., the unlimited,
indeterminate, which I call the non-genuine-infinite,
as well as tothe méeas (peras),i.e., the limit, and
explains it as an ordered ‘‘mixture’’ of the two latter.
Plato himself indicates that these concepts are of
Pythagorean origin; cf. A. Boeckh, Philolaos des

Pythagoreers Lehren (The Teachings of Philolaos, the \
Pythagorean), Berlin 1819.

On Section 4

(2) Aristotle. -Compare Zeller’s presentation in his
great work, Die Phiiosophie der Griechen (The

Philosophy of the Greeks), third edition, part II,

second section, pp. 393-403. Plato’s conception of the
infinite is an entirely different one than that of
Aristotle: compare Zeller, part II, first section, pp.
'628-646. Similarly I find points of contact for my concep-
tious in the philosophy of Nicolaus Cusanus. Cf. R.
Zimmerman, Der Cardinal Nicolaus von Cusa als
Vorganger Leibnizens (The Cardinal Nicolaus of Cusa
as a Precursor of Leibniz), Sitzungsberichte d. Wiener
Akademie d. Wiss. Jahrg. 1852. I note the same thing
with respect to Giordano Bruno, the successor of the
man from Cusa. Cf. Brunnhofer, Giordano Brunos
Weltanschauyng und Verhingnis (Giordano Bruno's
World View and Tragic Fate ), Leipzig 1882.
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An essential difference, however, is that I con-
ceptually fix the different gradations of the genuine
infinite once and for all by means of number-classes
(D), (I, (IID), and so on, and only now consider the
task not only to investigate the relations of the trans-
finite numbers mathematically, but also to identify
and pursue them wherever they might occur in
nature. There is no doubt in my mind that in this way
we will get farther and farther ahead, never reaching
an unsurmountable limit, but also attaining not even
an approximate grasp of the absolute. The absolute
can only be acknowledged, but never known, not even
approximately. For just as within the first number-
“class (I) for every finite number, no matter how great,
we are always confronted by the same power of the
finite numbers greater than it, in the same way every
transfinite number, no matter how large, of any of the
higher number-classes (II) or (III) and so on is
followed by a totality of numbers and number-classes
which has not suffered the least in power in com-

parison to the whole of the absolutely infinite totality |

of numbers starting at 1. This is a situation similar to
what Albrecht von Haller says of eternity: “‘I subtract
it (the enormous number) and you (eternity) still lie in
front of me in your entirety.”

The absolutely infinite number-sequence therefore
appears to me in a certain sense as an appropriate
symbol of the absolute; whereas the infinity of the
first number-class (I), which up until now has alone
served this purpose, seems to me in comparison like
an entirely insignificant nothing, not in the least,
because I regard it as a comprehensible idea (not
notion) (Vorstellung). I also regard it as noteworthy
that each of the number-classes, and hence each of the
powers, is associated with an entirely determinate
number of the absolutely infinite totality of numbers,
and in particular, in such a way that for every trans-
finite number y there exists a power which is to be

caMed the yth one. Thus the different powers, too,
form an absolutely infinite sequence. This is even

more striking, because the number y , which indicates
the order of a power (provided that for the number y
there exists an-immediately preceding one), has a
magnitude relative to the numbers of the number-
class which have this power, whose smallness defies
all description — and this the more so the greater 7 is
assumedtobe.

On Section b

(3) determinari possunt. 1 cannot ascribe any
existence (Sein) to the indefinite, the variable, the
non-genuine-infinite, in whatever form they may
appear, for they are nothing but relational concepts or
purely subjective notions (Vorstellungen ) or intuitions
(Anschauungen) (imaginationes), in no case adequate

ideas. If therefore only the non-genuine-infinite was
referred to in the proposition ‘infinitum actu non
datur,” then I could underwrite it, but the proposition
would then be a purely tautological one. However, it
seems to me that the meaning of this proposition in the
cited sources is rather that it is intended to express the
impossibility of the conceptual positing of a deter-
minate infinity, and in this meaning I regard it as
false.

On Section 7

(4) Realists . The positivist and realist standpoint of
the infinite are discussed, for example, in Diihring, .
Natiirliche Dialektik (Natural Dialectics ) Berlin 1865,
pp. 109-135; and in v. Kirchmann, Katechismus der
Philosophie (Catechism of Philosophy), pp. 124-130.
Compare also Ueberweg’s remarks on Berkeley’s
“Treatise Concerning the Principles of Human
Knowledge’’ in v. Kirchmann’s Philosophical Library.
I can only repeat that I essentially agree with all these
authors on the evaluation of the non-genuine infinite;
the point of difference lies only in this: that they
regard this syncategorematic infinite as the only
infinite which can be comprehended by means of
‘“turns of expression’’ or concepts, and here even by
mere relational concepts. Diihring’s proofs against
the genuine-infinite-could be carried out with much
fewer words and either amount to this, that the deter-
minate finite number, no matter how great it is
imagined to be, can never be an infinite one, which

‘immediately follows from its concept; or to this, that

the variable unlimitedly great finite number cannot be

- thought of with the predicate of determinateness nor

thus with the predicate of existence (Sein), which
again immediately follows from the essence of
variability. There is no doubt in my mind that this
does not make the slightest case against the conceiva-
bility of determinate transfinite numbers. Still, those
proofs are regarded as proofs against the reality of

/transfinite numbers. This mode of argument seems to

me similar to an attempt to prove that there is no red
from the fact that there are infinitely many intensities
of green. It is indeed remarkable, however, that
Diihring on p. 126 of his text himself admits that there
must be a reason for the explanation of the “possibil-
ity of unlimited synthesis,”” which he calls “‘under-
standably unknown.’’ It seems to me that a contradic-
tion lies in this. |

Similarly, however, we also find that thinkers close
to idealism or even fully subscribing to it deny any
justification to the determinate-infinite numbers.

Chr. Sigwart in his excellent work, Logik, Vol. 1I,
Die Methodenlehre, (The Doctrine of Method),
Tiibingen 1878, argues in a fashion quite similar to
Diihring’s and says on p. 47, ‘‘an infinite number is a
contradiction in adjecto. "’ :



Similar things are found in Kant and J.F. Fries; cf.

theSystem der Metaphysik (System of Metaphysics),
Heidelberg 1824, of the latter, in section 51 and sec-

tion 52. Also the philosophers of the Hegelian School

do not admit the genuine-infinite numbers; I would
only mention the deserving work of K. Fischer, his
System der Logik und Metaphysik oder Wissen-
schaftslehre (System of Logic and Metaphysics or
Theory of Science), 2nd edition, Heidelberg 1865, p.
275. :

On Section 8 |

(5) What I call here the ‘‘intrasubjective’” or “‘im-
manent’’ reality of concepts or ideas will probably
agree with the determination ‘‘adequate’’ in the sense
in which this word is used by Spinoza when he says in
Ethics, part I, def."IV: ‘“Per ideam adaequatam

intelligo ideam, quae, quatenus in se sine relatione ad

objectum  consideratur, omnes , verae ideae

proprietates sive denominationes intrinsecas habet. "’

(““By an adequate idea I understand an idea which,

insofar as it is considered.in itself without relation to
an object, has all the properties or inner character-
1st1cs of atrueidea.”’)

(6) This conviction concurs esséntially both with the

principles of the Platonic system and also with an
essential feature of Spinoza’s system. In relation to
the former ! reference Zeller, Philosophie der

‘Griechen , (Philosophy of the Greeks), 3rd edition, 2nd

part, 1st section pp. 541-602. It says there, right at the
beginning of the section, “Only conceptual knowledge

(according to Plato) will provide true insight. To the

extent, however, that our notions (Vorstellungen) are
true — thjs premise Plato shares with others (Par-
menides) — to the same extent their gbjects must be

real, and vice versa. What can be known is, what

cannot be known, is not, and to the same extent that
something is, to that extent it is also knowable.””

With respect ot Spinoza I need only call attention to
his proposition in Ethics, pars II, prop. VII: ‘“ordo et

connexio idearum idem est ac ordo et connexio rerum

(The ordering and connection of ideas is the same as
the ordering and connection of things).”’

The same epistemological principle can also be
demonstrated in the philosophy of Leibniz. Only since
modern Empiricism, Sensualism, and Skepticism,
and the Kantian Criticism which arose from them, is it
believed that the source-of knowledge and certainty
must be relocated into the senses or, at any rate, into
the so-called pure forms of intuition of the world of the
imagination (Vorstellungswelt) and must be limited
to these forms. I am convinced that these elements by
no means provide certain knowledge, since the latter
can be obtained only by means of concepts and ideas

95

which are at most stimulated by outer experience, but
mainly are formed through inner induction and deduc-
tion as something which in a certain sense lay in us
already and merely had to be awakened and brought
to consciousness.

On Section 8 and Section 9

(7), (8) The procedure in the correct formation qf
concepts is, in my opinion, everywhere the same: a
thing without qualities is posited, which at first is
nothing but a name or a signA, and to it are assigned
different; even infinitely many understandable predi-
cates in orderly fashion, predicates whose meaning as
attaching to already existing ideas is known, and
which must not contradict each other; in this way the
relationships of A to the already existing concepts,
and in particular to the cognate ones, are determined.
Once this process is completely finished, then all the
conditions for the awakening of the concept A, which
has slumbered within us, exist and the concept comes
into being ready-made, equipped with the intra-
subjective reality which is the only thing that can be
demanded of concepts anywhere. To establish its
transient significance is then the task of metaphysics.

On Section 10

(9) Thomas Aquinas, Opuscula, XLII de natura
generis, cap. 19 et 20; LII de natura loci; XXXII de

- natura materiae et de dimensionibus interminatis .
. Cf.: C. Jourdin, La Philosophie d’Aquin, pp. 303-329;

K. Werner, Der Heilige Thomas von Aquino,
Regensberg 1859, 2nd vol. pp. 177201,

(10) Even the totality of all continuous but also of all
integrable functions of one or several variables
pr Yably only has the power of the second number-
class (II). However, if all restrictions are dropped and
the totality of all continuous and discontinuous func-
tions of one or several variables is considered, then

this aggregate has the power of the third number-class
(III)

(11) For pérfect aggregates we can prove the theorem
that they never have the power of (I).
As an example of a perfect point-aggregate which is

not everywhere dense in any interval, no matter how

small, I cite the totality of all real numbers contained
in the formula ‘

Gy o
s b2t

where the coefficients ¢, are to arbitrarily take on
the two values 0 and 2 and ‘where the series may
consist of a finite as well as of an infinite number of
numbers. ‘
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(12) Observe that this definition of the continuum is

free from any reference to what is called the dimen-

sion of a continuous structure, for the definition also
encompasses such continua as consist of connected

pieces of different dimensions such as lines, planes,

solids and so on. On a later occasion I want to show

how one gets in orderly fashion from this general

continuum to the more specialized: continua of a
definite dimension. I know very well that the word
““continuum’’ so far hasnot taken on afixed meaning
in mathematics. My definition of it will therefore be
judged by some as too narrow, by others as too
broad ; hopefully I have succeeded in this in finding
the correct mean.

- According to my conception, by a continuum one
can only understand perfect and connected struc-

tures. Accordingly, for example, a straight line
segment, whieh is lacking one or both endpoints,
similarly a circular plane (disc) which does not in-

clude its boundary, are not complete continua; I call‘

such point aggregates semi-continua.

In general I understand by a semi-continuum an
imperfect connected point aggregate belonging to the
second class, such that any two points of it can be
connected by a complete continuum which is a part of
the point-aggregate. Thus, for example, the space
denoted by me by the letter U in Math. Ann. Vol. 20, P.
119, which results from @, by removal of any point-
aggregate of the first power, is a semi-continuum.

The derivative of a connected point-aggregate is
always a continuum, where it makes no difference
whether the connected point-aggregate is of the first

~or second power.

If a connected point-aggregate is of thefirst power,
I can call it neither a continuum nor a semi-

~ continuum.

By means of the concepts Wthh I put at the head of
the theory of manifolds, I propose to investigate all the
structures of algebraic as well as of transcendent geo-
metry according to all their possibilities; and I donot
expect the generality and acuity of the results to be
exceeded by any other method.



““The subject matter of economy for all

purposes of policy is declared to be
man’s wilful control of the maintenance
and development of those processes by
which the human race produces the
material preconditions of generally
improving existence for all members of
a growing world population.’’
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Appendix

Excerpts from Riemann, ‘“Fragments of a Philosophical
Contents” in The Collected Works of Bernhard Riemann,
edited by Heinrich Weber with the assistance of Richard
Dedekind, Dover Publications, Inc., New York, N.Y., 1953.
Translations hy James Cleary and Uwe Parpart.

I. The work which | am primarily occupied with now
is:

1. To introduce the imaginary into the theory of
other transcendent functions in a manner similar to
the way this has already been done with such great

success for algebraic functions, exponential and .

cyclical functions, elliptical and Abelian functions; for
this I have supplied the minimally necessary general
preliminary studies in my inaugural dissertation.

2. Connected to this are new methods for the integra-
tion of partial differential equations which I have
already successfully applied to several subjects in
physics.

3. My main work concerns a new conception of the
krown laws of nature — an expression of these by
means of different fundamental concepts — through
which the utilization of experimental data about the
mutual interaction between heat, light, magnetism
and electricity for the purpose of investigating their
relationship became possible. I was led to this mainly
through the study of the works of Newton, Euler, and
— on the other hand — Herbart . Concerning the latter,
I was in almost complete agreement with Herbart’s
earliest investigations, the results of which are ex-
pressed in his doctoral and habilitation theses, (Oct.
22 and 23, 1802). However, I had to depart from the
later course of his speculation on an essential point.
Because of this, a difference is stipulated regarding
his natural philosophy and those propositions of psy-
chology which concern its connection with natural
philosophy. '

il. Antinomies

Thesis

Finite things, imaginable things.

Finite time and space elements.

Freedom. i.e.. not the ability to initiate things in an
absolute sense but to decide between two or more
given possibilities.

In order that decision through free will be possible.
in spite of the totally determinate laws of the action of
"the conceptions. one must assume that the psychic
mechanism itself has or at least, in the course of its
development, assumes the characteristic quality of
bringing about the necessity of the latter. -

A God active in time .
(world government)

4.

/ v

Immortality

Freedom is entirely compatible with the strict law-
fulness of the course of nature. But the concept of a
timeless God is not tenable alongside of it. Rather, the
restriction which omnipotence and omniscience suffer
through the freedom of the creatures in the sense
presented above, must be removed through the accep-
tance of a God active in time, of a guide for the hearts
and fates of men. The concept of providence must be
‘expanded, and be partially replaced by the concept of

world government.



Antithesis

Infinite things, conceptual systems which lie one the
horders of the imaginabhle.

Continuous things.

Determinism.

No one engaged in action can give up the conviction
that future will be co-determined through his actions.

A timeless. personal, all-knowing, all-powerful, all-
good God (providence).

A thing in itself which is .the basis of our transient
phenomenal existence and is equipped with trans-
cendental freedom, radical evilness and an in-
tellectual character.
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The General Relationship of the Conceptual
Systems ‘
of the Thesis and Antithesis

The method, which Newton used for the founding of
the infinitesimal calculus, and which has been recog-
nized, since the beginning of this century, by the best
mathematicians as the only one which supplies relia-
ble results, is the method of limits. Instead of con-
sisting of a continuous transition from one value of a
magnitude to another one, or from one position to
another one, or in general from one method 'of
determination of a concept to another method, this
method examines, first of all, a transition by way of a
finite number of intermediate stages, and then it
allows the number of these intermediate stages to

_increase in such a fashion that the intervals between

two successive intermediate stages all decrease to the
infinite. ' |

The conceptual systems of the antithesis are con-
ceptions that are firmly determined through negative
predicates, however, they are not representable in a
positive manner.

For the very reason that an exact and complete
representation of these conceptual systems is im-
possible, they are inaccessible to direct investigation
and molding by our reflection and deliberation. But
they can be considered to be lying on the border of the
representable, i.e., one can form a conceptual system
which lies within the boundaries of the representable,
and which through a mere change in the order of
magnitude is transformed into the given conceptual
system. Apart from the order of magnitude, the
conceptual system remains unchanged in the transi-
tion to the limit. But in the limiting case itself, some of
the correlative conceptions of the system lose their
representability, and in particular, they are those
which mediate the relationship between other con-
cepts.

lil. New Mathematical Principles of Natural
Philosophy

Found on March 1, 1853 ,

Although the title of this essay will hardly arouse a
favorable predisposition in most readers, it nonethe-
less seemed to me to best express the overall tendency
of the essay. Its purpose is to drive forward beyond the
foundations laid by Galilei and Newton of astronomy
and physics into the interior (essence) of nature. For
astronomy, actually, this speculation cannot im-
mediately have any practical use, but I hope this
circumstance even in the eyes of the readers of this
publication will cause no diminution in interest....

The basis for the general laws of motion for pon-
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derables, which are found assembled at the beginning .
of Newton’s Principles, lies in the inner state of the

latter. Let us try to deduce it by way of analogy from
our own inner (mode of) perception. New imagination-
masses constantly arise in us and very rapidly
disappear again from our consciousness. We observe

a continuous activity of our soul. Every act of the’
latter is based upon something permanent, which on-

special occasions (through memory) gives note of
itself as such, without exerting a lasting influence
upon the appearances. Thus, constantly (with every
thought-act) something permanent enters our soul,
which, however, does not exert a lasting influence

upon the world of appearances. Thus, every act of our -

soul is based upon something permanent, which, with
this act, enters our soul, but at the same moment
completely disappears from the world of appear-
ances.

Guided by thes fact, I make the hyp\othesis that the
world-space is filled with a substance (Stoff), which
constantly streams into the ponderable atoms and
there disappears from the world of appearances (the
world of bodies).

Both hypotheses can be replaced by the one that in

all ponderable atoms, substance of the world of bodies
constantly enters into the world of spirit (mind). The
reason why the substance disappears there is to be
sought in the spiritual (mind-) substance formed there
immediately before (then), and hence the ponderable
bodies are the place (point) where the world of spirit
(mind) intervenes into the world of bodies * |
The effect of universal gravitation, the first thing

which shall be explained from this hypothesis, is — as "’

is well known — entirely determined for every part of
space, if the potential function P of all ponderable
masses for this'part of space is given, or, which is the
same, a place-function P which is such that the
ponderable masses contained in the interior of a
closed surface S are

If now it is assumed that the space-filling substance
is an incompressible homogeneous fluid without iner-
tia, and always in equal times equal amounts, propor-
tional to its mass, will stream into every ponderable

»

In every instant, a fixed quantity of substance, proportional
to the gravitational force, enters into every ponderable atom
and vanishes there.

It is the consequence of the psychology established on Her-
bartian foundations that substantiality accrues not to the soul
but to every individual conception (Vorstellung) formed
inside of us.

atom, then obviously the pressure experienced by the .
ponderable atom [will be proportional to the velocity
of the motion of the substance at the place of the
atom(?)]

Thus, the effect of universal gravitation upon a
ponderable atom can be expressed through and
thought of as dependent upon the pressure of the
space-filling substance in the immediate neigh-
borhood of the atom.

From our hypothesis it follows necessarily that the
space-filling substance must propagate the vibrations
which we perceive as light and heat.

If we consider a simply polarized ray, call x the
distance of an arbitrary point of the ray from a fixed
starting point and y its elongation at time t, then,
since the propagation speed of vibrations in a space
free from ponderables is under all circumstances very
near constant (equal to a ), the equation: |

y = f(x +\*at) + ¢(x — at)

must at least be very near being satisfied.
If it were strictly satisfied, we would have to have:

-Q-X=aaf —xdr,

apparently, however, our expenence can also be satis-
fied by the equation:

dy _ f‘ oy
- ea 532 ¢ (t—r)dr,

even if ¢ (t- 7) is not equal to 1 for all positive values
of t- r (with increasing t- r decreases to infinity), as
long as for a sufficiently large amount of time it
remains very closetol... :

Let the position of substance-points at a definite
time t be expressed by a rectilinear coordinate
system, and let x,y,z be the coordinates of an arbi-
trary point O. Similarly, also with respect to a recti-
linear coordinate system, let x’,y’,z’ be the coordin-
ates of the point O'. Then x',y’,z’ are functions of
X,y,z and

ds'?=dx'?+dy’? +dz"?

will be equal to a homogeneous second degree ex-
pression of dx,dy,dz. According to a well-known
theorem, the linear expressions of dx, dy, dz

a dx +8,dy+vy dz=ds

a,dx +f,dy +v,dz =ds,

a,dx +8,dy +v,dz = ds,



now can always and in only one way be determined in
such a way that

dx'? +dy'? +dz"? =G,?ds, ? + G, 2ds 2

2 2
+ (33 ds3
while

ds? = dx? +dy? +dz? =ds ? +ds,? +ds,%.”

The magnitudes G 1, G 1, G 1 are then called the

main dildtations of the substance-partlcle at O in the

transition from the former form to the latter; I label
them l-l ) lz ) AS. |
I now assume that from the difference of the earlier
form of the substance-particle from its form at time t
there results a force which attempts to change this one
(this form at t), and that the influence of an earlier
form ( caeteris paribus) will become the less the
longer it occurred before t, and, in particular, such

that from a certain limit on, all the earlier ones can be

neglected. I further assume that those states which °

still exercise a detectable influence differ so little
from that at time t that the dilatations can be

regarded as infinitely small. The force which attempts

to decrease A ,)\ .A, can then be regarded as linear
functions of )\ 7\ Aa; in particular, because of the
homogeneity of the aether, we obtain for the total
moment of these forces (the force which attempts to
decrease A, , must be a function of A, s A, - A which
remains unchanged, when we exchange 7\2 for )\3 ,and
the remaining forces must follow from it, when A
exchanged for 7\1 )\3 for )\] ) the following ex-
pression: -

aN, (ax, +bX, +bX ) + 3N, (bX, +aX, +bA,)

+8x, (bA, +bX, +a),),

or, w1th a slight change in the meaning of the con-
stants, :

X, (a(A, + A+ 2,)+ b))
tox,(a(d + A, + 2 ) +bA))
Hax, (a (A, + A, + 2 ) +b)
=%3(a(d,+2,+x)2 +b (A 2+ 2,2+ 17,7)).

Now the moment of the force, which attempts to
change the form of the infinitely small substance-
particle at O, can be regarded as resulting from
forces, which attempt to change the length of the line
elements ending at O. We then arrive at the following
law of action:
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If dV is the volume of an infirritely small substance-
particle at point O and time t, dV ' the volume of the
same substance-particle at time t’, then the force,
resulting from the difference in the two states of the

substance, which attempts to elongate ds is expressed
by ‘

dV — dVv’ ds — ds’
a—gv— tb—g

- The first part of this expression stems from the force

with which a substance-particle resists a change in
volume without a change in form, the second from the
force with which a physical line element resists a
change in length. '

Now there is no reason to assume that the effects of
both causes change with time in accordance with the
same laws; thus adding up the effects of all the earlier
forms of a substance-particle upon the change of the
line element ds at time t, then the value of dds ,

| | dt
which they attempt to bring about, becomes

t
V' —
=_-[ A

t &
ds ' — ds , ,
+. f———(F—-qb(tﬂt)at.

— o0

How now must the functions ¥ and’ ¢ be constituted sb
that gravitation, light and radiating heat can be

) propagated by the spatial medium?

The effects of ponderable matter upon ponderable

‘matter are: E

1. Attractive and repulsive forces inversely propor-
tionaltot. »square of the distance.

2. Light and radiating heat.
. Both classes of phenomena can be explained if one
assumes that the entirety of infinite space is filled by a.
homogeneous substance, and each substance-particle
acts directly upon its immediate neighborhood.

The mathematical law in accordance with which
this occurs can be thought of as split up into

1. the resistance which a substance-particle puts up
to a change in volume, and

2. the resistance which a physical line element puts
up to a change in length.
Upon the first part rest gravitation and electrostatic
attraction and repulsion, upon the second, the propa-
gation of light and heat and electrodynamical and
magnetic attraction and repulsion.
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IV. References to Attempts at Creating a Unufled
Physical Theory

November, 1850

Thus, for example, a mathematical theory, entirely
complete in itself, can be assembled, which proceeds.
from the elementary laws valid for single points to
events in the actually given, continuously filled space,
without separating as to whether we are dealing with
gravitation, or electricity, or magnetism, or the
equilibrium of heat.

December, 1853

My other investigation on the connection between
electricity, galvanism, light, and gravity I had
resumed immediately after the completion of my
“Habilitationsschrift,”” and 1 have gotten far enough
with it, so that without second thoughts I can publish it
at this time. At the same time I have become more and
more certain that Gauss has also been working on this
for several years, and has communicated the matter
under the seal of silence to a number of friends, Weber
among others.... |

February, 1858

I have handed over my discovery on the connection

between electricity and light to the Royal Society
here. From a number of remarks 1 have heard about
this, I am forced to conclude that Gauss has estab-
lished and communicated to his closest acquaintances

However, 1 am completely convinced that my theory
is the right one and in a few years will generally be
accepted as such.

V. A Contribution to Electrodynamics
February, 1858
" I am taking the liberty to communicate to the Royal

Society a remark which brings the theory of electrici-
ty and magnetism into close connection with that of

-

‘light and radieting heat. I have found that the electro-
. dynamnc effects of galvanic currents can be explained

if one assumes that the action of one electrical mass
upon the hthers does. not occur instantaneously, but is
propagated to them with a constant velocity (within
the errors of observation equal to the speed of light).
The differential equations for the propagation of
electrical-force under this assumption becomes the
same as that for the propagation of light and of radia-
ting heat... :

...According to present assumptions concerning
electrostatic action, the potential function U of arbi-
trarily distributed electrical masses, if p is their

density at point (X,y.,2), is determined by the condi-

tion

02U + 92U + 32U
ax? oy? 022

—4np =0

| 3

and the condition that U is contmuous and constant at

. an infinite distance of acting ‘masses. A part:cular
- integral of the equatlon

32U 32U 32U _
+ + =0,
ax> ay?  0z?

: 'whlch is contmuous everywhere except for the point
(xhylz"), 1sg1venby

)

-and th'is }fdﬁ_ctiqn constitutes the potential function
- generated at the point (x,y’, z'), ifattimet the mass

a theory of this connection different from my own. "~ -f(t) is present at that'point.

Instead of this I assume:that the potential functlon

U is determmed by the condition

32U -8U+8U+62U + aq 47 = 0
e “\oax2 7 ay? | 9z p
SO that the potential function generated at the point

(x'y'z),ifattime t the mass -f(t) is present there, is

given by .
f (t —=)

= . a’
r
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