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 I seek to know in what consists the true sense of the infinitesimal Calculus; the 
reflections that I have laid forward on this subject are set in three chapters: in the first I 
state the general principles of infinitesimal analysis; in the second I examine how this 
analysis was reduced to algorithms by the invention of the differential and integral 
Calculus; in the third I compare this analysis to other methods which can replace it, such 
as the method of exhaustion, that of indeterminates and indivisibles, that of 
indeterminates, etc. 
 

First Chapter 
General Principals of Infinitesimal Analysis 

 
1. There is no discovery in the mathematical sciences that has produced so fortunate 
and prompt a revolution as that of infinitesimal analysis; none has furnished either 
simpler or more efficacious means to penetrate into the knowledge of the laws of nature.  
In decomposing, so to speak, bodies into their elements, they seem to have indicated their 
interior structure and organization; but, since all that is extreme escapes from the senses 
and the imagination, one has only ever been able to form an imperfect idea of these 
elements, species of singular beings, which sometimes play the role of real quantities, and 
sometimes must be treated as absolutely nothing and seeming, by their equivocal 
properties, to take the middle ground between quantity and zero, between being and 
nothingness.(*) 
                                                           
(*)§1 – I speak here in conformance with the vague ideas held regarding the quantities commonly called 
infinitesimals, as one has not taken the pain to examine their nature; but, in truth, nothing is simpler than the 
exact notion of these sorts of quantities.  In effect, to say of a quantity that it is infinitely small, is precisely 
to say that it is the difference between two magnitudes which have the same third magnitude as their limit, 
and nothing more than this.  The idea of an infinitesimal quantity is thus not more difficult to grasp than that 
of a limit; but it has, as everyone agrees, the advantage of leading to a much simpler theory.(*)§13 – I 
suppose here that the proposed question had beforehand been reduced to finding, in effect, the relationships 
which exist between such or such proposed quantities.  If, for example, we are concerned with drawing a 
tangent to any underdetermined point of this curve, I begin by arbitrarily fixing the point through which I 
wish to draw the tangent, and I reduce the question to finding the relationship which exists, for example, 
between the sub-tangent and the abscissa, or between the ordinate and the sub-normal corresponding to the 
same point.  But if someone asked me, for example, how I would apply my definition of the infinite which 
we shall see, to these questions: Is matter infinitely divisible?  Is the space in which exist all created things 
infinite? and other similar questions; I respond that my definition is only that of the mathematical infinite; 
that it can only be applied to questions of which the object is only to find relationships which exist between 



 Luckily, this difficulty has not injured the progress of the discovery: it is certain 
primitive ideas which always leave some clouds in the mind, but of which the first 
consequences, once drawn out, open a vast field, easy to traverse.  Such had seemed that 
of the infinite, and several geometers made the most happy use of it, who could not 
perhaps have fathomed the notion at all; however the philosophers could not content 
themselves with an idea so vague: they wanted to ascend to the principles, but they found 
themselves divided in their opinions, or more so in their manner of envisioning the 
objects.  My goal in this writing is to bring together these different points of view, to 
show the relationships between them, and to propose new ones.  I will think myself well 
rewarded by my work if I am able to succeed in throwing some light on such an 
interesting subject. 
 
2. The difficulty that one often encounters, in explaining exactly through equations 
the different conditions of a problem, and in resolving these equations, could have given 
birth to the first ideas of the infinitesimal Calculus.  When it is too difficult, as a matter of 
fact, to find the exact solution to a question, it is natural to look for a means of 
approaching it as closely as possible, in leaving out those quantities which hinder the 
combinations, if one foresees that these neglected quantities can, because of their 
smallness of value, produce only a slight error in the results of the calculations.  It is thus, 
for example, that, only being able to discover with difficulty the properties of curves, one 
could have imagined them as polygons with a large number of sides.  As a matter of fact, 
if e.g., one conceives of a regular polygon inscribed in a circle, it is apparent that these 
two figures, though always different and never capable of becoming identical, do, 
however, come to resemble each other more and more, accordingly as the number of sides 
of the polygon increases, that their perimeters, their areas, the solids formed by their 
revolutions around a given axis, analogous lines drawn inside or outside these figures, the 
angles formed by these lines, etc., are, if not respectively equal, are at least approaching 
equality to the degree that the number of sides becomes greater, from which it follows 
that, in supposing the number of sides to be very large in fact, one could without sensible 
error attribute to the circumscribed circle the same properties pertain to the inscribed 
polygon. 
 Furthermore, each of the sides of the polygon diminishes in size, obviously, 
accordingly as the number of sides increases, and as a consequence, if one supposes that 
the polygon be really composed of a very great number of sides, one could say also that 
each of them is really very small. 
 This posed, it a particular circumstance should be found by chance in the course 
of a calculation where one can much simplify the operations, in neglecting, for example, 
one of these small sides in comparison to a given line, such as the radius; in other words, 
it is clear that we could, without any disadvantage, use in our equations the given line 
instead of a quantity equal to the sum of this line and one of these small sides, for the 
error which would result could only be extremely small and would not merit putting 
ourselves through the trouble to come to know its value. 

  
                                                                                                                                                                             



3.  For example, let us draw a tangent at a given point M on the circumference MBD 
(Fig. 1). 
 Let C be the center of the circle, DCB the axis; let us suppose the abscissa DP = x, 
the corresponding ordinate MP = y, and let TP be the sought sub-tangent. 
 To find it, let us consider the circle as a polygon with a large number of sides.  Let 
MN be one of these sides; and let us prolong it up to the axis: this will obviously be the 
tangent in question, since this line will not penetrate into the interior of the polygon.  
Drop also the perpendicular MO on NQ, parallel to MP, and name the radius of the circle 
a; this posed, we will clearly have 
 
 MO : NO : : TP : MP, or MO/NO = TP / y. 
 
 In addition, the equation of the 
curve being, for the point M, yy = 2ax – 
xx, it will be, for the point N, 
 
(y + NO)2 = 2a (x + MO) – (x + MO)2; 
 
subtracting the first equation (found for 
point M) from this equation (found for 
point N), and then reducing, we have 
 

;
22

2
MOxa

NOy
NO
MO

−−
+=  

 
 
setting equal therefore this value of 
MO/NO to that found above, and 
multiplying by y, there follows 
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 If therefore MO and NO are known, we will have the sought value of TP; now 
these quantities MO, NO are very small, since there are each less than the side MN, 
which, by hypothesis, is itself very small.  Therefore (by section 2) one can neglect 
without any sensible error these quantities by comparison with the quantities 2y and 2a – 
2x to which they are added.  Therefore the equation is reduced to 
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which was to be found.  Q.E.D. 
 
4.  If this result is not absolutely exact, it is at least evident that in practice it can pass 
for such, since the quantities MO, NO are extremely small; but someone who had no idea 
of the doctrine of infinites would be perhaps much amazed if we tell him that the 
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 not only approaches the truth, but really is of the most perfect 

exactitude: it is however a thing easy to be certain of in finding TP, using the principle 
that the tangent is perpendicular to the extremity of the radius, for it is visible that the 
similar triangles CPM, MPT give CP : MP :: MP : TP, from which one derives 
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5. For a second example, let us suppose the question of finding the area of a given 
circle. 
 Let us again consider this curve as a regular polygon with a large number of sides; 
the area of any regular polygon is equal to the product of its perimeter and half the 
perpendicular drawn from the center to an edge; therefore, the circle being considered as a 
polygon of many sides, its area must be equal to the product of its circumference by half 
its radius: a proposition that is not less exact than the result found above. 
 
6. However vague and of little precision may seem these two expressions very great 
and very small, or other equivalents, one sees, by the two preceding examples, that it is 
not without utility that one employs them in mathematical combinations and that their 
usage can be of a great help in facilitating the solution of diverse questions that can be 
proposed, for, once their notion is admitted, all curves can, as well as the circle, be 
considered as polygons of many sides; all surfaces can be divided into a multitude of 
bands or zones, all bodies into corpuscles; all quantities, in a word, can be decomposed 
into particles of the same sort as them [the quantities].  From this spring many new 
relationships and new combinations, and one can easily judge, by the examples cited 
above, the resources that must be furnished to calculation by the introduction of these 
elementary quantities. 
 
7. But that advantage that they procure is yet well more considerable than we first 
had room to hope it to be, for it follows from the reported examples that what was seen at 
first only as a simple method of approximation, leads us, at least in certain cases, to 
perfectly exact results.  It will therefore be interesting to know how to distinguish those 
where this arrives, to bring to this condition other cases as much as possible, and to 
change thus this method of approximation into a calculation perfectly exact and rigorous.  
Now, such is the object of infinitesimal analysis. 
 

8. Let us see first how, in the equation found in section III, ,
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was possible to leave out MO and NO, without altering at all the correctness of the result; 
or rather how the result became exact by the omission of these quantities, and why it was 
not exact before their omission. 
 Now, one can give simple account for the reason for what has occurred in the 
solution of the problem treated above, in remarking that, the hypothesis from which we 
set out being false, since it is absolutely impossible that a circle can ever be considered as 



a real polygon, whatever may be the number of its sides; under this hypothesis there is 

necessarily a certain error in the equation ,
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 was nonetheless certainly exact, as we proved by the comparison of the two 

triangles CPM, MPT: we were able to leave out MO and NO in the first equation, and we 
indeed had to do so to rectify the calculation and eliminate the error which had been 
brought about by the false hypothesis from which we began.  Leaving out the quantities 
of this nature is therefore not only permitted in such a case, but it is necessary, and it is 
the only manner of exactly explaining the conditions of the problem. 
 

9. The exact result 
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 was therefore only obtained by a compensation of 

errors, and this compensation can be rendered yet more apparent in treating the above 
reported example in a slightly different manner, that is by considering the circle as a real 
curve, and not as a polygon. 
 To this end, for a point R taken arbitrarily at some distance from point M, let there 
be drawn a line RS parallel to MP, and for the points R and M let there be drawn the 
chord RT’; we will obviously have 

T’P : MP : : MZ : RZ 
and therefore 

T’P or (TP + T’T) = .
RZ
MZ

MP  

 
 This posed, if we imagine that RS moves parallel to itself in continually 
approaching MP, it is visible that the point T’ will approach at the same time closer and 
closer to T and that one could consequently make the line TT’ as small as we will like 
without the above-established proportion ceasing to hold.  If therefore I leave out this 
quantity TT’ in the equation that I just found, there will result in truth an error in the 
equation TP = MP (MZ / RZ), to which it will be reduced; but this error can be reduced as 
much as one would like, by causing RS to approach MP as much as is necessary, which is 
to say that the relationship of the two parts of this equation will differ from each other as 
little as one would like in respect to their equality. 
 Similarly, we have MZ / RZ = (2y + RZ) / (2a – 2x – MZ) (§3) and this equation 
is perfectly exact whatever be the position of point R, which is to say, whatever be the 
values of MZ to RZ.  But the more RS approaches MP, the more the lines MZ and RZ 
will be small; and therefore if one leaves them out in the second part of that equation, the 
error which will result in the equation MZ / RZ = y / (a – x), to which it will then be 
reduced, can, as the first, be made a small as one would judge it for our concerns. 
 This being so, without having regard to the errors which I will always be master to 
reduce as much as I like, I treat the two equations that I just found, 

TP = MP (MZ / RZ) and MZ/RZ = y/(a – x), 
as if they were both perfectly exact; substituting therefore in the one the value of MZ/RZ 
derived from the other, I have as a result TP = y2 / (a – x), as above. 



 This result is perfectly right, since it conforms to that which we obtained by 
comparison of the triangles CPM, MPT and even though the equations TP=y (MZ/RZ) 
and MZ/RZ=y/(a-x), from which it was derived, are certainly both false, since the 
distance from RS to MP was never proposed to be zero, nor even very small, but instead 
equal to a certain arbitrary line.  It must consequently be necessary that the errors 
mutually compensate themselves in the comparison of the two erroneous equations. 
 
10. We see, therefore, the occurrence of compensated errors well attained and proved; 
we now treat explaining it, to research the sign by which one recognizes that the 
compensation holds in calculations similar to the preceding, and the means to produce 
this compensation in each particular case. 
 Now, it suffices for this to remark that, the errors made in the equations 
TP = y MZ / RZ and MZ / RZ = y / (a – x) being able to be made as small as one likes, 
that error which will occur (if one is indeed to be found) in the resulting equation TP = y2 
/ (a – x) can also be made as small as one would like, and it will depend on the arbitrary 
distance of the lines MP and RS.  Now this is not so, since, once given the point M 
through which the tangent must pass, it is found that none of the quantities, a, x, y, or TP 
of this equation are arbitrary; therefore it cannot have, in effect, any error in this equation. 
 It follows from this that the compensation of errors, which were found in the 
equations TP = y MZ / RZ and MZ / RZ = y / (a – x), manifests itself in the result by the 
absence of the quantities MZ and RZ which caused the errors, and that consequently, after 
having introduced these quantities in the calculations to facilitate the expression of the 
conditions of the problem, and having treated them in the equations which expressed 
these conditions as null in comparison to the proposed quantities, [with the end of 
simplifying these equations], there is left only to eliminate these same quantities from the 
equations where they are still found to eliminate the errors that they have occasioned and 
to obtain a result which will be perfectly exact. 
11.  The inventor has therefore been able to be led to his discovery by a quite simple 
reasoning: if in the place of a proposed quantity, he was able to say, 

“When I employ in the calculation another quantity which is not completely equal 
to it, there will result some error; but if the difference between the quantities employed is 
arbitrary, and if I am able to make it as small as I would like, this error will be by no 
means dangerous; I will even be able to commit many similar errors at the same time 
without any attendant disadvantage, since I will always remain master of the degree of 
precision that I would like to give to my results.  There is still more: it is possible to make 
these errors mutually compensate and therefore my results become perfectly exact.  But 
how operates this compensation, and how in every case? 

“It is what a little reflection will be able to discover to us; in effect,” the inventor 
will be able to say, “let us suppose for an instant that the desired compensation took place, 
and let us see by what sign it must manifest itself in the result of the calculation.  Now, 
what must naturally happen, is that the quantities which occasioned these errors having 
disappeared, the errors have likewise disappeared, for, the quantities such as MZ and RZ, 
having by hypothesis been arbitrary values, they must no longer enter into the formulas or 
results that are not arbitrary, and that, being become exact by supposition, depend 
uniquely, not on the will of the calculator, but on the nature of the things of which one 



had proposed to find the relation expressed by these results.  Therefore the sign that 
announces that the desired compensation occurs is the absence of the arbitrary quantities 
that produced these errors, and hence to establish this compensation, requires only the 
elimination of these arbitrary quantities.” 
 
12. To further cement these ideas and give to the principles which are thereby derived 
the degree of precision and generality that suits them, I will remark that the quantities that 
we have considered in the above-treated question can be distinguished into two classes; 
the first class is composed of quantities, which, like MC, MP, PT, and MT, are either 
given or determined by the conditions of the problem; and the second is composed of 
quantities, which, like RS, RT’, and ST’, depend on the arbitrary precision of point R, and 
such that as the position of this point R approaches the point M, each among them 
approaches its correspondent in the first class, so that MP, for example, is the limit of RS, 
which is to say, the fixed term which it continually approaches, or, if we like, its last 
value; likewise, MT is the limit or last value of RT’, and PT that of ST’.  For the same 
reason, it is clear that the limits or last values of MZ, RZ, MR, T’T are all 0; finally, it is 
also clear that the last ratio of RS to MP, that is, the last value of RS/MP is a ratio of 
unity, in the same way as that of RT’ to MT, of ST’ to PT, or, in short that of any other 
quantity to its limit. 
 
13. Now let us now imagine then, to extend these remarks to other problems of the 
same genre, to any system of proposed quantities, and let it be a question of finding the 
relations which exist among them.(*) 
 
14. First of all, I comprehend under the name of designated quantities, not only all the 
quantities which are proposed by the very statement of the question, but also all those 
which depend only on these quantities: that is, those which are functions of these and only 
these quantities. 
 
15. I will call, on the contrary, non-designated or auxiliary quantities all those which 
are not at all part of the system of designated quantities, and which consequently do not 
enter essentially at all into calculations, but are introduced only to facilitate the 
comparison of proposed quantities. 
 Thus, in the preceding example, MP, MC, MT, DP, etc. are designated quantities, 
since they depend only on the position of point M through which the tangent must be 
drawn; but RS, and all those which depend on it, like MZ, RZ, T’T, T’P, etc. are auxiliary 
quantities, since we only imagined to draw them to aid the solution of the question, which 
was to find the relationship of MP to TP. 
 It clearly follows from this that in any non-designated quantity, there is necessarily 
something arbitrary; for, if in it there entered nothing arbitrary, its value would be 
assigned by the very conditions of the problem, and consequently would depend totally on 
the proposed quantities, which is contrary to the hypothesis. 
 
16. When in mathematics, two lines, two surfaces, two solids, or any two quantities 
whatsoever are assumed to perpetually approach each other by insensible degrees, in a 



manner that their ratio or quotient differs by less and less and differs as little as one likes 
from unity, one says that these two quantities have for their last ratio a ratio of equality. 
  
17. If one of these magnitudes is an assigned quantity, and the other an auxiliary 
quantity, the first is called the limit or least value, of the second: that is to say, a limit is 
nothing other than a designated quantity to which an auxiliary quantity is assumed to 
approach perpetually, in such a manner that it is able to differ as little as one would like, 
and that their least ratio be a ratio of equality. 

Also, it is only the auxiliary quantities, strictly speaking, that have what I call a 
limit; for the designated quantities not being assumed to change, but on the contrary being 
themselves the terms or last values of auxiliary quantities, cannot strictly be spoken of as 
having limits, unless we only say that every designated quantity is, itself, its own limit, 
one can only agree, since the least value of any determined quantity can only be the 
quantity itself. 
 
18. Thus, in general we name least values and least ratios of quantities, the values of 
the ratios which are in effect the least of those that are assigned to these magnitudes and 
to their relations, by the law of continuity, when each of them is supposed to approach 
perpetually and by insensible degrees to the designated quantity to which they correspond. 
 
19. One names in general an infinitely small quantity the difference between any 
auxiliary quantity and its limit; so, for example, RZ, which is the difference between RS 
and MP, is what one calls an infinitely small quantity. 
 
20. We name on the contrary, infinite, or, infinitely large, every magnitude, which is 
equal to unity divided by an infinitely small quantity: such as, consequently, the quantity 
1/RZ or 1/(RS-MP). 

However, since the limit or least value of RS is MP, it is clear that the limit or 
least value of RZ or RS – MP is 0, and that of 1/RZ is 1 / 0. 
 
21. So we could say in general that an infinitely small magnitude is nothing other than 
a quantity whose limit is 0, and that on the contrary, an infinitely large quantity is none 
other than a quantity whose limit is 1 / 0. 
 
22. We comprehend under the name of infinitesimal quantities, infinite quantities or 
infinitely large quantities, and those which are infinitely small; all other magnitudes are 
called finite quantities. 
 
23. To say, following vulgar usage, that the infinite is that without boundary, that 
without limit, or that of which the limit does not exist, is thus giving to it a simple idea 
that is not groundless, since in effect the infinitesimal quantities all have as limits, some 
0, the others 1/0, which are not true quantities. 
 
24. However from the limits of these quantities being 0 or 1/0, by no means does it 
follow that these quantities themselves are chimerical beings; for, on the contrary, by the 



very definition (§19), an infinitely small quantity is the difference of two very real 
quantities, to wit: an ordinary auxiliary quantity and its limit. 
 
25. It further follows from this that one can regard any infinitely small quantity as the 
difference between two auxiliary quantities which have as a limit a third similar 
designated quantity; for, let X and Y be two different auxiliary quantities which have as a 
limit a same third quantity A. 

I say that X – Y is an infinitely small quantity.  In effect, since the limit or last 
value of X is A, and that of Y is also A; it follows that the least value of X – Y will be A 
– A or 0.  So the limit of A + (X – Y) is A; thus we can regard X – Y as the difference of 
an auxiliary quantity A + (X – Y) to its limit A; so (§19) this difference is an infinitely 
small quantity; thus we could say in general that an infinitely small quantity is nothing 
other than the difference of two auxiliary quantities that have the same limit. 
 
26. Two quantities cannot have the same third quantity as a limit without having 
between each other, as last ratio, a ratio of equality; for, since by hypothesis, the limit or 
least value of X / A is 1, the same as that of Y / A; it is clear that the limit or least value of 
(X / A) / (Y / A) is also unity.  Yet,  (X / A) / (Y / A)= X / Y; thus the limit or last value 
of X / Y is 1, that is, that the last ratio of X to Y is a ratio of equality.  So, in general, we 
could say that an infinitely small quantity is the relationship of the difference between two 
magnitudes which have as last ratio, a ratio of equality to each of these magnitudes. 
 
27. Finally, it is evident that one could further say that an infinitely small magnitude is 
none other than a non-designated quantity, to which one could attribute, at first, any 
arbitrary value, which one supposes next to decrease imperceptibly towards zero.  Thus, 
in general, when we say, let Z, for example, be an infinitely small quantity, that is 
precisely the same thing as if we were to say, let Z be an ordinary arbitrary quantity (and 
consequently auxiliary, for designated quantities cannot be arbitrary), and let us suppose 
next that this quantity is decreasing perpetually towards zero. 
 
28. A quantity is called infinitely small, relative to another quantity, when the ratio of 
the first to the second is an infinitely small quantity, and reciprocally, the second is called 
infinite or infinitely great relative to the first. 
 
29. Two quantities are deemed to differ infinitely little, or to have infinitely little 
difference from one another, when the ratio of one to the other differs from unity only by 
an infinitely small quantity, in a manner that their least ratio be a ratio of equality, RS and 
MP are plainly such quantities. 
 
30. We name infinitesimal calculus the art which teaches to discover the ratios and 
any relations whatsoever which exist between the diverse parts of any system of proposed 
quantities, by aid of the quantities that I have just named infinitesimal. 

These infinitesimal quantities, all being only auxiliary quantities, that is, 
introduced only in the calculation in order to facilitate the expression of the proposed 
conditions, it is clear that it is absolutely necessary to eliminate them from the calculation 



in order to obtain the desired result, that is, the sought ratios; thus we could say, in a way, 
that the infinitesimal calculus is an unfinished calculus, or an as-yet uncompleted 
calculus, because in effect as soon as one has arrived at eliminating from it the auxiliary 
quantities and those which do not enter essentially into the calculations, it ceases to be 
infinitesimal, and completely resembles ordinary algebraic calculus.(*) 

To complete the explanation of the principal terms relevant to the theory of the 
infinite in general, there remains for me to say what I mean by imperfect equation. 
31. I call an imperfect equation any equation of which the two members are unequal 
quantities, but differ infinitely little from one another, or, which comes to the same thing, 
every equation of which the two members, although unequal, have for least ratio, a ratio 
of equality. 

So, for example, the false equations TP = y (MZ / RZ) and (MZ / RZ) = y/(a – x) 
found in (§9), are what I call imperfect equations, since the neglected quantities in the 
exact equations from which they are derived, are infinitely small quantities, thus it is on 
the theory of these sorts of equations which the solution of the above treated question and 
all similar types are founded.  This is why I am going to explore the principles of this 
theory, which is the basis of infinitesimal calculus, or, rather, which is nothing other than 
the infinitesimal calculus itself. 
 

FIRST THEOREM 
 
32. If in any imperfect equation, we substitute in place of any one of the quantities 
which enters therein, another quantity which differs infinitely little, or whose ratio to the 
first has unity for limit or last value, the equation which will result by this transformation 
could not be a false equation, that is it becomes absolutely exact, or at least it remains 
what I have called an imperfect equation.In effect, since by hypothesis we have only 
substituted for one quantity another whose least value is the same, and whose ratio to the 
first has unity as limit, it is clear that this substitution can in no way change the least 
values of the members of the proposed equations, nor their least ratios. Yet this last ratio 
was, by hypothesis, unity before substitution; thus it will still be so after; so the equation 
will maintain the character of an imperfect equation, unless it becomes rigorously exact: 
which was to be proven. 
 

SECOND THEOREM 
 
33. Every equation that contains only designated quantities cannot be an imperfect 
equation. 

In effect, by the definition of imperfect equations, their members are unequal; but 
differing infinitely little from one another, their ratio approaches as much as we want to a 
ratio of equality; thus some quantity enters in this equation which is not part of the system 
of proposed quantities; but by hypothesis, on the contrary, the here-proposed equation 
                                                           
(*)§30 – Everyone knows, in effect, that a calculation into which infinitesimal quantities enter is not 
considered completed, and that one relies on the exactitude of the result only at the moment where all these 
infinitesimal quantities are entirely eliminated.(†) §36 – Coming soon: how this is derived.  



contains only designated quantities.  Thus it cannot be what I have called an imperfect 
equation: which was to be proven. 
 

THIRD THEOREM 
 
34. Every imperfect equation to which we have performed only transformations 
similar to that indicated in the first theorem, and in which we shall succeed in eliminating 
by these transformations all non-designated quantities, will be necessarily and rigorously 
exact. 

For, by the first theorem it cannot be an absolutely false equation, and by the 
second, it cannot be an imperfect equation; thus it is necessarily and rigorously exact. 
 

COROLLARY 
35. Everything that was just said on the subject of imperfect equations must be 
understood to be equally true for proportions, propositions, and any arguments susceptible 
of being expressed by similar equations. 
 

SCHOLIUM 
36. Such are the general principles to which the theory of infinitesimal calculus is 
reduced.  We see by these principles that, if having expressed by imperfect equations the 
conditions of the problem, we succeed then by transformations similar to that indicated in 
the first theorem, we succeed, I say, in eliminating from these equations all auxiliary or 
non-designated quantities, it will be necessary to, in the course of the calculations, 
perform a compensation of errors; and that the advantage of this calculation consists in 
the fact that the conditions of a question being often very difficult to express exactly by 
rigorous equations, while it would be easy to do it by imperfect equations, it gives the 
means to derive by these imperfect equations the same results and ratios with as much 
certitude as if the first equations had been truly of the most perfect exactitude, and this by 
the simple elimination of quantities whose presence occasions these errors. 

The reason for this is simple: suppose that we have to discover the relations which 
exist among several proposed quantities; if it is difficult to directly find equations which 
express these relations, it is natural to resort to some intermediate quantities which serve 
as terms of comparison; by this means we could obtain, if not the sought equations, at 
least other equations where the proposed quantities would be mixed with these auxiliary 
quantities; thus it will no longer be a question of eliminating these.  However, if moreover 
the values of these auxiliary quantities are arbitrary, and could be supposed as small as we 
want without there being any change to the proposed quantities, it is easy to perceive that 
if in the equations which express the sought relations, the arbitrary quantities are found 
mixed with the proposed quantities, each of these equations will be decomposable into 
two others, the one containing only designated quantities, and the other containing 
arbitrary quantities, more or less the same as an equation which contains real quantities 
and imaginary quantities could be decomposed in two, the one of real quantities, the other 
of imaginary quantities.  Now, as we only need an equation which exists between 
proposed quantities, it is clear that we can, without any drawback, neglect the quantities 
which hinder the calculation in those equations which are mixed with arbitraries, as the 



errors which must therein result can lie only in an equation between the arbitraries that it 
contains.  Yet this is precisely what happens in the infinitesimal calculus, as one treats as 
nulls, in comparison to finite quantities, those quantities which we have called infinitely 
small. 

In order to render this explanation more sensible still, let us resume the above-
treated example.  We have found  (§9), 
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both perfectly exact equations, whatever be the values of MZ and RZ; so, taking from the 
first of these equations the value of MZ/RZ, and substituting it into the second, I have 
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an exact equation and which must therefore hold, whatever be the distance one would like 
to put between the lines RS and MP. 

Now, it is easy to see(†) that I am able to put this equation in the following form: 
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in which the first term contains only given quantities or those determined by the 
conditions of the problem, and of which the second contains only arbitraries, and could be 
supposed as small as we would want without having any change to the quantities which 
are contained in the first term, since we are able to suppose RS as close as we want to 
MP. Thus, following the theory of indeterminates, each of the terms of this equation, 
taken separately, must be equal to zero; that is to say, that this equation could be 
decomposed into two others: 
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of which the first contains only designated quantities, and the second only arbitraries.  But 
we only have need of the first, since it is this one which gives us the sought value of TP, 
as we have already found.  So even though we would have committed errors in the course 
of the calculation, provided these errors only occur in the latter equation, the exactitude of 
the result would not have suffered at all; and this effectively is what would have happened 
if we had treated MZ, RZ and T’T as nulls by comparison to the proposed quantities a, x, 
y, in the original equations; we would have in truth committed errors in the expression of 
the conditions of the problem, but these errors would have destroyed themselves by 
compensation, and the needed result would have been in no way altered. 
 
37. It is easy to perceive, according to what was just said, that infinitesimal analysis is 
nothing other than an application, or if you will, an extension of the method of 
indeterminates; for, following this method, I may say that when we neglect an infinitely 
small quantity, we do so, properly speaking, only to infer, and not to truly suppose it to be 
null; for example, when, instead of these two exact equations  
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found in (§9), I employ the two imperfect equations 
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I know quite well that I commit an error and I put them, so to speak, mentally under this 
form: 
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ϕ and ϕ' being such quantities as are necessary for the equations to hold exactly: likewise 
in the equation 
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resulting from the two imperfect equations above, I infer the quantity ϕ" such that 
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be an exact equation; but I soon recognise that this last quantity ϕ" is equal to zero, 
because if it were not zero, it could only be infinitely small, so long as there enters no 
other infinitesimal quantity in the first term; yet this is impossible, since each of these 
terms, taken separately, be not equal to zero; whence I conclude that we have exactly 
TP/MP = y/(a – x); and yet the quantities ϕ, ϕ', and ϕ" have not been removed as nulls, 
but simply so inferred to simplify the calculation.  In effect, if X, for example, is an 
arbitrary quantity which may be rendered as small as we would like, and we have an 
equation of this form: 

A + BX + CX2 + etc. = 0; 
A, B, C, etc. being independent of X, this equation could not hold unless we have A = 0, 
B = 0, C = 0, etc., that is, without each term taken separately being equal to zero, 
whatever be the number of these terms.  Now, by the same reasoning, if we had in general 
an equation of this form, P + Q = 0, such that P is a function of the given quantities or 
determined by the conditions of the problem, and on the contrary, Q is quantity we can 
suppose as small as we want, we would have necessarily P=0 and Q=0; but such is 
precisely the nature of the equation found above: 
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Thus each of the terms of this equation, taken separately, is equal to zero; so we would be 
able to neglect during the course of the calculation the quantities T'T, MZ, and RZ – 
which do not enter in the first of these terms – without altering this first term; thus 
infinitesimal analysis differs from the method of indeterminates, only when in the first we 
treat as null, or rather we infer during the course of the calculation quantities which 
destroy themselves in the result if we allowed them to remain; instead in the method of 
indeterminates, we await the end of the calculation in order to remove the arbitrary 
quantities which must be eliminated.  This last method could be substituted easily enough 
for infinitesimal analysis without employing the aid of imperfect equations, and without 
ever committing any error in the course of the calculation.  
38. There is yet another means to substitute infinitesimal analysis by ordinary 
algebraic calculation; it is the method of limits or last ratios.  For, although this method is 
founded entirely on the properties of limits and last ratios, it differs however from what 



we name properly the method of limits, in that neither the quantities we have named 
infinitesimals, nor even their ratios, would enter separately in the calculation, but only the 
last values of these ratios, which being finite magnitudes, make of this method, less a 
particular calculation, as I have come to say it, than a simple application of ordinary 
algebraic calculation. 

Thus we are concerned, being limited in introducing to ordinary algebra, not 
infinitesimal quantities, but the last ratios of these quantities, to substitute for means 
which infinitesimal analysis furnishes in order to discover the properties, ratios and any 
relations of these magnitudes which compose a proposed system, and see that it is 
properly what we have called the method of limits. 

In order to explain the foregoing and give to it some life, let us take yet again the 
example treated above. 

It is clear, by what has been said (§9), that although MZ/RZ is not at all equal to 
TP/MP; however the first of these quantities differs ever less from the second, as RS is 
closer to MP, that is, that MZ/RZ = TP/MP is an imperfect equation; but (designating by 
L. the expression of the limit or of last value) L.MZ/RZ = TP/MP is a perfect equation, or 
rigorously exact. 

Likewise we shall prove that L. MZ/RZ = y/(a – x) is also a perfect equation, or 
rigorously exact; equating therefore these two values of L. MZ/RZ, it follows that 
TP/MP= y/(a – x), or TP= y2/(a – x), as above.  Also, neither the infinitely small quantities 
MZ and RZ separately, nor even their ratio MZ/RZ, exist any longer in the equation, but 
only the limit or last value L. MZ/RZ, which is a finite quantity. 
 
39. If this method were always as easy to put into usage as ordinary infinitesimal 
analysis, it could appear preferable; for it would have the advantage of moving to the 
same results by a direct and always luminous route, instead of that which drives to the 
truth only after travelling, if it be permitted to speak in such a way, through the land of 
errors. 

But it is necessary to acknowledge that the method of limits is subject to a 
considerable difficulty which does not appear in ordinary infinitesimal analysis; it is that 
the infinitely small quantities not being separable, as in this case, from one another, and 
these quantities being found together two by two, we are not able to enter the properties 
which pertain to any one of them in particular into combinations, nor subject them to 
equations where they encounter all the transformations which could aid in their 
elimination; and this difficulty is much less sensed in the very operations of the 
calculation, than in the propositions and arguments which prepare or provide for these 
operations. 
40. It seems, by what we have said (§2) on the possible origin of infinitesimal 
analysis, that the quantities which we have named infinitely small, have received this 
classification, because we believed in the beginning that, for the success of the 
calculations which use them, there must be attributed to these arbitraries, values which 
were really less than anything which could fall upon the senses, and anything which the 
imagination could conceive; but a more reflected-upon metaphysics, has shown that this is 
useless, because the success of the calculation comes, not by the attenuation of the 



arbitrary quantities, but uniquely by the compensation of errors that they occasion in the 
calculation. 

In effect, we have seen in the above example that the procedures and results of the 
calculation were absolutely the same, whatever value we attributed to the infinitely small 
quantities MZ and RZ, and that by consequence the character of the quantities of this type 
do not consist in the reality of their smallness, but rather in their absolute indetermination, 
that is, in the property by which they have to remain arbitrary during the whole 
calculation, and so independent of the proposed quantities, that one is always able to take 
them to be as small as we want without changing the conditions of the problem. 

The infinitesimal quantities, as I have already stated (§24), are not therefore 
chimerical beings, but simple variable quantities characterized by the nature of their limit, 
which is 0, for infinitesimal quantities, and 1/0, for infinitely large quantities. Thus we 
can successively attribute diverse arbitrary values to these indeterminates, and likewise to 
all other indefinite quantities, and among these values, we must add the last of all which is 
0 for infinitely small quantities, and 1/0 for infinite quantities. 
41. This observation gives rise to the division of mathematical infinity into two kinds; 
to wit, the sensible or assignable infinite, and the absolute or metaphysical infinite, which 
is nothing other than the limit of the first. 

So if we assign to any infinitely small quantity a determined value which is not 0, 
this value would be what I call a sensible or assignable infinitely small quantity, which I 
shall designate also by the name of infinitely small; instead if this value is the least of all, 
that is, if it is absolutely 0, it would be what I call an absolute or metaphysical infinitely 
small quantity, and what I would designate also by the name of a vanishing quantity. 

Thus, a vanishing quantity is not what we call in general an infinitely small 
quantity, but only the last value of this quantity; it is, I say, only a determined value that 
we can attribute, as any other, to this arbitrary magnitude which in general we name 
infinitely small. 
42. The consideration of these vanishing quantities would be almost useless, if we 
were confined to treating them as simply null quantities; for they offer only the vague 
relation of 0 to 0, which is not more equal to 2 as to 3 or to any other quantity; but it is 
necessary not to lose view of the point that these null quantities here have particular 
properties as last values of the indefinitely small quantities of which they are limits, and 
that we only give them the particular classification of vanishing in order to avoid the use 
of all the ratios and relations of which they are susceptible in the quality of null quantities, 
we would like to consider and enter into the combinations of our calculations only those 
which are assigned to them by the law of continuity, as we imagine the system of 
auxiliary quantities to be approaching by insensible degrees to the system of designated 
quantities: it is this that the great geometers understood themselves to be expressing in 
saying that the vanishing are considered quantities, not before they vanish, not after they 
have vanished, but at the very instant that they are vanishing. 

In the above-treated case, for example, as long as RS does not coincide with MP, 
the fraction MZ/RZ is larger than TP/y; these two fractions become equal only at the 
moment where MZ and RZ are reduced to zero; it is true then that MZ/RZ is just as equal 
to any quantity besides TP/y, since 0/0 is an absolutely arbitrary quantity; but among the 
diverse values that one can attribute to MZ/RZ, TP/y is the only one that is subjected to 



and determined by the law of continuity; for if one constructed a curve with the abscissa 
being the indefinitely small quantity MZ, and the ordinate proportional to MZ/RZ, that 
which matches corresponds to the null abscissa, will be represented by TP/y, and not by 
an arbitrary quantity: for it is that which distinguishes the quantities that I call vanishing 
from those which are simply null. 
 Thus, although in general we have 0 = 2×0 = 3×0 = 4×0 = etc., one cannot say of a 
vanishing quantity such as MZ, that MZ = 2MZ = 3MZ = 4MZ = etc.; for the law of 
continuity cannot assign between MZ and MZ a relationship other than equality, or any 
ratio other than that of identity. 
43. We have seen that in introducing indefinitely small quantities into calculation, and 
by neglecting them in comparison with finite quantities, the equations would become 
imperfect, and the errors which had taken place were only compensated for in the sought 
result.  We can now avoid, be we so inclined, this type of drawback by the means of 
vanishing quantities, which, being nothing other than last values of corresponding 
indefinitely small quantities, could, as all other values, be attributed to these indefinitely 
small quantities; and which, on another side, being absolutely null, can be neglected, 
when they are found added to such effective quantities, without the calculation ceasing to 
be perfectly rigorous. 
 
44. Thus we can envisage infinitesimal analysis under two different points of view; in 
considering the infinitely small quantities either as effective quantities, or as absolutely 
null quantities.  In the first case, infinitesimal analysis is nothing other than a calculation 
of compensating errors; and in the second, it is the art of comparing vanishing quantities 
among themselves and with others, to draw from these comparisons whatever relations 
and ratios exist among the proposed quantities. 
 As equal to zero, these vanishing quantities must be ignored in the calculation, as 
they find themselves added to or removed from some effective quantity; but, as we have 
just seen, they are nonetheless interesting relations to know, relationships which are 
determined by the law of continuity which the system of auxiliary quantities is subjected 
to in its changes.  Now, to easily grasp this law of continuity, it is easy to perceive that 
one is obliged to consider the quantities in question at some distance from the term where 
they vanish entirely, if not they would only offer the indefinite relationship of zero to 
zero; but this distance is arbitrary and has as its only object to judge more easily the 
relationships which exist among these vanishing quantities: these are the relationships that 
one has in view in looking at infinitely small quantities as absolutely null, and not those 
which exist among quantities which are not yet brought to the term of their disappearance.  
These, which I have named indefinitely small, are not at all destined to themselves take 
part in the envisaged calculation from the point of view of which we are dealing at this 
moment, but employed only to aid the imagination, and to indicate the law of continuity 
which determines the ratios and any relationships among the vanishing quantities to 
which they correspond. 
 Thus, following this hypothesis, in the proportion MZ : RZ :: TP : MP, the 
quantities represented by MZ and RZ are indeed supposed to be absolutely equal to zero; 
but since it is their ratio that we need, it is necessary, to determine the equality of this ratio 
with TP / MP, to consider the indefinitely small quantities which correspond to these null 



quantities, not with the aim of introducing them into the calculation, but to bring them in 
under the denomination of MZ and RZ, the vanishing quantities which are their last 
values. 
45. These expressions MZ, RZ thus represent null quantities, and we can employ them 
under the forms MZ, RZ, rather than under the common form 0, only because if we 
employed them in effect under this latter form, we could no longer separate, in the 
operations where they are found mixed, their diverse origins, that is, the diverse 
indefinitely small quantities to which they correspond.  Therefore, the consideration of 
this, at least mentally, is necessary to grasp the law of continuity which determines the 
sought-for ratio of vanishing quantities that they have for limits, and by consequence it is 
essential not to lose sight of them and instead to characterize them by expressions which 
prevent confusing them. 
 
46. The vanishing quantities which are the subject of infinitesimal calculus envisaged 
under this new point of view, are in truth entities of thought; but that does not prevent 
their having mathematical properties, nor their comparison as well as the comparison of 
the imaginary quantities that no longer exist; for it is also true to say, for example, that 

60 = 20 + 40 as .
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ba ×−=−   So no one revokes the exactitude of the results by the 

calculation of imaginaries, although they be algebraic forms, and hieroglyphs of absurd 
quantities; we cannot give exclusion to vanishing quantities which are at least limits of 
effective quantities, and touch so to speak, existence. What matters in effect is whether 
these quantities are or are not chimerical beings, if their relations are not (chimerical); and 
that these relations are the only thing which interests us?  We are entirely in control, in 
submitting to calculation the quantities which we have named infinitesimal, to regard 
these quantities as effective quantities, or as absolutely null; and the difference which is 
found between these two methods of envisaging the question, consists in that by regarding 
these quantities as null, the propositions, equations and whatever results, are always exact 
and rigorous, but by relating quantities which are entities of thought, and expressing 
relations which exist between quantities which do not exist themselves: instead of 
regarding the infinitely small quantities as something effective, the propositions, 
equations and whatever results properly have for subject veritable quantities; but these 
propositions, equations and results are false, or rather they are imperfect, and become 
exact at the end only by compensation of their errors, a compensation, which, however, 
follows necessarily and infallibly from the operations of the calculation. 
47. The metaphysics, which was just exposed, easily furnishes responses to all the 
objections which were made against infinitesimal analysis, which several geometers have 
believed based on a faulty principle capable of leading them astray; but they have been 
overwhelmed, if I may express it so, by the multitude of marvels, and by the flashing 
bursts of truths which are brought out en masse by this principle. 

These objections can be reduced to this: either the quantities that we have named 
infinitely small are absolutely null, or not; for it is ridiculous to suppose that there exist 
entities which take the middle ground between quantity and zero.  Now, if they are 
absolutely null, their comparison leads to nothing, since the ratio of 0 to 0 is not more a 



than it is b, or any other quantity whatever; and if they are effective quantities, we cannot 
without error treat them as null, as the rules of infinitesimal analysis prescribe. 

The answer is simple: quite far from having the power, in effect, to consider 
infinitely small quantities, either as something real, nor as nothing, we could say on the 
contrary that we can at will regard them as null or as veritable quantities; for those who 
would want to regard them as null, could respond that what they name infinitely small 
quantities are not at all null quantities, but null quantities assigned by a law of continuity 
which determines the relation between them; that among all the relations of which these 
quantities are admitting of consideration as zero, they consider only those which are 
determined by this law of continuity; and that finally these relations are not at all vague or 
arbitrary, since this law of continuity does not at all assign, for example, several different 
relations to the differentials of the abscissa and of the ordinate of a curve when these 
differentials are vanishing, save one only, which is that of the sub-tangent to the ordinate. 
On the other side, those who regard infinitely small quantities as veritable quantities, 
could respond that what they call infinitely small is only an arbitrary magnitude 
independent of the proposed quantities; and that furthermore, we can, without supposing 
it null, nonetheless treat it as such without there ensuing any error in the result, since that 
error, if it existed, would be arbitrary like the quantity which would have occasioned it.  
Therefore, it is evident that a similar error could only exist between quantities of which at 
least one is arbitrary.  Thus when we have reached a result which no longer contains any, 
and which expresses any relation between the given quantities and those which are 
determined by the conditions of the problem, one can assure that this result is exact, and 
that by consequence the errors which must have been committed in expressing these 
conditions, have been compensated for, and disappear, by the necessary and infallible 
succession of the operations of the calculation. 
 
48. Other geometers, apparently blocked by the objection just discussed, have attached 
themselves to simply proving that the method of limits whose methods are rigorously 
exact in all points, necessarily leads to the same results as infinitesimal analysis.  
However, in admitting that the principle of this method is very luminous, we may be 
concealing that it only evades the difficulty without resolving it; that the method of limits 
leads to the results of infinitesimal analysis only by a difficult and roundabout route; and 
that finally this method, far from being the same as that of the infinitesimal calculus, is, 
on the contrary, only the art of doing without it, and supplanting it by ordinary algebraic 
calculation: which we would succeed in doing in a more simple manner, it seems to me, 
with the method of indeterminates.  But why would one adopt one of these methods to the 
exclusion of the others, since they can aid each other mutually?  Thus let us employ 
everything together, infinitesimal analysis properly stated, the method of limits, and that 
of indeterminates, following the indicated circumstances, and neglecting no other means 
which can lead us to a knowledge of the truth, or in simplifying the search. 

It now remains for me to show by several examples the application of the general 
principles which I have just explained; and that is what I am going to do in giving an idea 
of differential and integral calculus, which are, properly speaking, infinitesimal analysis 
itself put into practice. 
 



49. If one were to attribute successively to the same variable quantity two values 
differing infinitely little from each other, the difference between the second of these two 
values and the first shall be named the differential of this first value. 

Let, for example, AMN (Fig. 2), be a 
curve relative to which we have some question 
to resolve, such that the ordinate MP is one of 
the quantities designated by this question.  I 
suppose, moreover, that in order to facilitate the 
solution, we could draw parallel to MP, and at 
an arbitrary distance from this ordinate, an 
auxiliary line NQ, and next let this line 
approach MP continuously until it coincides 
with it; the line NO, or NQ – MP would be 
(§19) an infinitely small quantity.  Yet, as it is 
the difference of two values attributed 
successively to the ordinate, NQ and MP, it is 
suitable to designate it in the discourse by the 
diminutive expression of differential of the 
variable MP, and to represent it in the 
calculation by this same variable preceded by 
the characteristic d: thus, in giving the name y 
to the ordinate MP, dy signifies the same thing as the differential of MP. 

But suppose, as we have done, that NQ approached MP perpetually, that is, 
suppose that AQ also approaches AP perpetually; for the first of these two suppositions 
necessarily brings about the second; thus in giving the name x for the abscissa AP, PQ or 
MO will be the differential of x, and we would have MO=dx at the same time that NO=dy. 

If, moreover, we were to suppose NQ= y' and AQ= x', we would have y'= y + dy 
and x'=x + dx; that is to say, that the differentials dy and dx, are none other than the 
increase of the corresponding variables y and x, or the quantities by which they are 
augmented as they become y' and x'. 
 
50. Now let a new value RS be attributed to the ordinate, such that PQ and QS differ 
infinitely little from one another, or have for a last ratio a ratio of equality; in order that 
this be, it is obviously necessary, since NQ by the first hypothesis is already supposed to 
approach MP perpetually, it is necessary, I say, that RS also approach the same line MP 
perpetually, in a manner that it finishes as NQ does by coinciding with it; otherwise it is 
clear that the ratio of QS to PQ, which must by hypothesis be approaching unity without 
cease, without withdrawing from it: also the ratios of NQ to MP, of RS to MP, of RS to 
NQ and of QS to PQ, will all have for a limit the ratio of equality.  Moreover, it is visible 
that due to the law of continuity, the ratio of RZ to NO will be the same case.  Thus, 
following the general notion we have given above of differential quantities, QS must be 
the differential of AQ, RZ that of NQ, QS–PQ or NZ–MO that of PQ, and finally RZ–NO 
that of NO; likewise NO or NQ–MP is that of MP.  So, conforming to the convention 
made on the subject of the manner of expressing the differentials in the calculation, we 
must have QS = dx', RZ = dy', QS–PQ = d(MO), RZ–NO = d(NO).  However we have 



already found MO = dx, NO = dy; thus QS–NO = ddx, RZ–NO = ddy; that is, the 
quantities ddx and ddy (we can also write it in the manner d2x, d2y), will be the 
differentials of differentials of x and y, and are what, to be brief, we name second 
differentials, or second order differentials; that is, ddx is the differential of the second 
order, or the second differential of x, and ddy that of y. 

Now, since QS and PQ are supposed to differ infinitely little from one another, 
their difference ddx is infinitely small relative to each of them (§28). So, differences of 
the second order are infinitely small relative to the first differentials or those of the first 
order.(*) 
 
51. We could differentiate similarly in their turn differentials of the second order, and 
this differentiation would result in differentials of the third order; differentiating this 
would result in that of the fourth order, and so forth: in a manner dddy, or d3y, will be the 
third differential of y; ddddy, or d4y, the differential of the fourth order, etc.  Therefore, 
according to what we have just said on the generation of differentials of the first and 
second order, it is easy to comprehend how the higher orders are made; so I will not stop 
there; I will only say that in attributing for each new order a new auxiliary value to each of 
the variables, such that, not only each of these new values differ infinitely little from that 
which precedes it, but the same thing takes place between their differentials, the 
differentials of their differentials, and so forth.  
 
52. To differentiate a quantity is to assign its differential; that is, if X, for example, is 
any function of x, to differentiate it will be to assign the quantity by which this function 
will increase while supposing that x augments by dx.  

To integrate or to sum a differential, on the contrary, is to return to this differential 
the quantity which had produced it by differentiation, and this latter quantity is called the 
integral or sum of the proposed differential: so x, for example, is the integral or the sum 
of dx, and to integrate or sum dx is nothing other than to assign this quantity x which is its 
sum or integral. 

We have seen that the differential of a quantity is expressed in the calculus by this 
same quantity preceded by the characteristic d; reciprocally, it is conventional suitable to 
express the integral or sum of any differential by this same differential preceded by the 
characteristic �: that is, that �dx, for example, signifies the same thing as the sum of dx: 
thus we clearly have x = �dx.  
  
53. We call the differential and integral calculus the art of finding any ratios and 
relationships which exist between the proposed quantities, by aid of their differentials.  
The name differential calculus is properly applied to the art of finding the ratios or 
relationships of the differential quantities, and then to eliminate them by the ordinary rules 
                                                           
(*) §50 – If instead of drawing the new auxiliary line RS in a manner that the lines QS and PQ differ 
infinitely little from one another, we could draw it such that QS be precisely equal to PQ, that is, such that 
AP, AQ, AS, are in arithmetic progression, we will have ddx = 0, or dx constant:  thus we could suppose 
one of the differentials constant; but from AP, AQ, AS being in arithmetic progression, it does not follow 
that MP, NQ, RS, are so also, unless the line AMN be right: thus, from supposing ddx equal to zero, it 
would not follow that we would also have ddy = 0. 



of algebra, and that of integral calculus the art of integrating or eliminating these same 
differential quantities by processes which indicate a return of a differential to its integral. 

My aim here is not to write a treatise on the calculus; but only to indicate the 
fundamental rules thereof, and to show that these rules are nothing other than an 
application of the general principles just exposed. 
 
54. Therefore, we propose, at first, to assign the differential of the sum x+y+z+ etc, of 
several variables. 

By hypothesis x becomes x+dx, y becomes y+dy, etc. Thus the proposed sum 
becomes x+dx+y+dy+z+dz+etc., and it increases by dx+dy+dz+etc., and this increase is 
precisely what we have named differential. 
                                                                  
55. We now require the differential of a+b+c+ etc. +x+y+z+etc. : a,b,c, etc. being 
constants, and x, y, z, etc. being variables.  By hypothesis, a remains a, b remains b, c 
remains c, etc., x becomes x+dx, y becomes y+dy, etc.  Thus the proposed sum becomes 
a+b+c, etc. +x+dx+etc.; thus it is increased by dx+dy+dz+ etc., and this increase is the 
sought differential; thus this differential is the same as if there had not been any constants 
in the proposed sum. 
 

We require the differential of ax. 

By hypothesis, a remains a, and x becomes x+dx. Thus ax becomes ax+adx; so it 
is increased by adx, and this increase is the sought differential. 
 
56. We require the differential of xy. 

We see by the preceding that it is ydx+xdy+dxdy, that is to say, we have d.xy= 
ydx+xdy+dxdy. 

However, I observe, with regard to this equation, that dx and dy being infinitely 
small relative to x and y, the last term dxdy is itself infinitely small relative to each of the 
others; in other words, that the quotient of this last term over each of the others, is an 
infinitely small quantity.  So if we were to neglect it in the preceding equation, it would 
become then d.xy= xdy+ydx, this equation will be what I have named an imperfect 
equation.  However, since imperfect equations can (§31, §34) be employed as rigorous 
equations, without there ensuing any error in the sought result, it is evident that I may 
make use of this latter equation in place of the former; and as it is simpler, I will on this 
occasion, abridge and facilitate, with its aid, the operations of my calculation. 

Thus, I will say that the differential of a quantity, which is the product of two 
variables, is equal to the product of the first variable and the differential of the second, 
plus the product of the second variable by the differential of the first; and this proposition 
would be among those which I have called (§35) imperfect propositions, that is, 
susceptible of being conveyed by an imperfect equation, and as such, leading towards 
exact, rigorous results.(*) 
                                                           
(*) §56 – If from the imperfect equation dxy=xdy + ydx, I wanted to create a rigorous equation, I could do 
so, by first restoring to the right-hand-side the missing term dxdy; but I could also do so in the following 
manner: I would divide everything by dy, for example, and I would have the new imperfect equation 



 
57. We will find by procedures like those above, that we have the imperfect equation 
d.xyz = xy dz  + xz dy + yz dx. 

We would similarly find the imperfect equation d. x/y = (ydx - xdy)/ yy. 
We would similarly find the imperfect equation d.xm = mx(m-1) dx, etc. 

 
58. These are the principal rules of differential calculus; let us now proceed to the 
integral calculus, which is the inverse method. 
       1.  Since the differential of x is dx, the integral of dx would be x, that is, one would 
have �dx = x.  However since the differential of a+x is also xdx (§55), it follows that the 
integral of dx is just as much a + x as it is x alone, and that in general each differential has 
as many diverse integrals as we would want to give it; but all these integrals differ only 
by a constant quantity.  Thus it suffices to determine any one to add to it an arbitrary 
constant to represent all the others: that is, that all the possible integrals of dx will be 
represented by x + A, A being an arbitrary constant. 
       2.  Since the differential of x+y+z+ etc. is dx+dy+dz+ etc., the integral of this 
differential will be x+y+z+ etc. + A, A being an arbitrary constant.  
       3.  The differential of xy being xdy+ydx (§56) as well as that of xy + A, the integral of 
xdy + ydx is reciprocally xy +A, A being an arbitrary constant. 
       4.  We shall likewise find that the integral of (ydx–xdy)/yy is x/y + A. 
       5.  We shall likewise find that the integral of mxm-1 dx is xm + A, etc. 
 

Such are the principal rules of integral calculus; it now remains for us to 
demonstrate by several particular examples the application of these rules and those of 
differential calculus; this will be done as succinctly as is possible for us. 
 
 FIRST PROBLEM  
 

       
 

                                                                                                                                                                             
d.xy / dy = y(dx/dy) + x; and since (§19) an auxiliary quantity differs infinitely little near its limit, I can, in 
the preceding equation, put lim. (d.xy / dy) in place of d.xy / dy and lim. (dx/dy) in place of dx/dy, without 
the equation ceasing to be imperfect (§32).  So it then becomes lim. (d.xy / dy) = y � lim. (dx/dy) + x; but 
every limit is by the same definition (§17) a designated quantity.  Thus since dx and dy are auxiliaries, lim. 
(d.xy / dy) and lim. (dx/dy) are the designated quantities; therefore all the terms of the preceding equation 
lim. (d.xy / dy) = y � lim. (dx/dy) + x, are designated quantities; and therefore (§34) this equation is 
necessarily and rigorously exact. 



59. Given an elliptical curve AMB (Fig. 3), find the sub-tangent TP which 
corresponds to a given point, M, of this curve. 

Let AB be the major axis of the curve:  let us call a half of the major axis, b the 
semi-minor axis, x the abscissa AP, and y the ordinate PM; thus we will have 

).2( xxax
aa
bb

yy −=   This posed, let us draw a new ordinate NQ infinitely close to MP, 

such that, this auxiliary line NQ is at first taken to an arbitrary distance from MP, and is 
then imagined to be continuously drawing nearer to it (MP), in a manner in which the last 
ratio, is an ratio of equality; the lines MO, NO would be (§49) the respective differentials 
of x and y. Now the similar triangles TPM, MZO give 

.
ZNNO

MO
ZO
MO

MP
TP

+
==   However it is evident that the more NQ approaches MP, the 

more ZN diminishes relative to NO, and that their least ratio is 0.  So ZN is infinitely 
small relative to NO; thus TP/MP=MO/NO is an imperfect equation (§31); that is, 
TP/y=dx/dy is an imperfect equation.  

From the other side, the equation of the curve being ),2( xxax
aa
bb

yy −=  we would 

have in differentiating it, another imperfect equation );( dxadx
aa
bb

ydy −=  thus 

substituting in this latter the value of dx taken from the former, and reducing, we will 

have ;
xa

yy
bb
aa

TP
−

×=  an equation which no longer contains infinitesimal quantities, and 

is necessarily and rigorously exact (§34). 
 
60. Another solution: let us consider the proposed curve as a polygon with an infinite 
number of sides; that is, in place of the proposed curve, take a polygon with a number of 
sides, and next suppose that this number of sides increases perpetually, in such a manner 
that the least ratio of this polygon with the curve is one of equality.  As it is absolutely 
impossible that the curve can be considered exactly like a polygon, the equations by 
which I would express the conditions of the problem following this hypothesis, will not 
be exact; but since the polygon is supposed to approach the curve without cease, the 
errors which will be found in these equations, will be attenuated as much as we would 
like, therefore, these same equations would be that which I have called imperfect. 

So the triangles T'MP, MNO give me the equation T'P/(MP) = MO/NO; 
substituting TP for T'P, which differ infinitely little, we would have this imperfect 
equation, TP/MP=MO/NO or TP/y=dx/dy, the same as that we found above, and which, 
combined with that of the curve, gives me the same result. 
 
 61. We could also, were we so inclined, apply the method of indeterminates to this 
question, without changing anything in the procedures of the calculation.  In effect, after 

having found the two imperfect equations 
dy
dx

y
TP =  and ),22(2 xdxadx

aa
bb

ydy −=  I add 

mentally to one of the former members, a quantity ϕ; I introduce similarly into the second 
a quantity ϕ' which renders it (similarly) rigorously exact: the agreed upon quantities ϕ 



and ϕ' are infinitely small relative to those to which we add mentally. This posed, I 
compare the two preceding equations without taking into account ϕ and ϕ'; the equation 

xa
yy

bb
aa

TP
−

=  which shall result, being possibly not exact, I add again mentally a 

quantity ϕ'' which makes it so. However as this quantity ϕ'' can only be infinitely small, I 
soon recognize that it is absolutely null, because the other terms of the equation no longer 
contain infinitesimal quantities; so putting all the terms together, the equation which 

would be ,0=′′+
−

− ϕ
xa

yy
aa
bb

TP  could not hold following the method of indeterminates, 

without any of its terms in particular being equal to zero: thus ϕ"= 0, and ,
xa

yy
aa
bb

TP
−

=  

as above. 
                                                               
62. In general, it is clear according to what has just been said, that if we name P the 
sub-tangent of any curve, we would have the imperfect equation P= y dx/dy; thus (§34) 
we would have the rigorous and exact equation P=y × lim(dx/dy). 
  If we call Q the angle swept out between the tangent of the curve at any point and its 
corresponding ordinate [angle TMP], evidently we will have, tan Q=P/y and cot Q= y/P; 
thus we will have the imperfect equations tan Q= dx/dy and cot Q= dy/dx, or the rigorous 
equations, tan Q= lim (dx/dy) and cot Q= lim (dy/dx). 
   

SECOND PROBLEM 
 

63. We require the value which 
must be attributed to x so that the 
function xxax −2  be a maximum, 
that is, larger than we have attributed 
to x at another arbitrary value.  Let 

yxxax =−2 or ,2 xxaxyy −=  and 
let us construct a curve of which the 
abscissa is x and ordinate y, thus the 
question would be to find the largest 
ordinate of this curve. Let AMB (Fig. 
4) be this curve and MP its largest 
ordinate: that posed, since including 
the point M the other ordinates 
decrease, either from side A, or from 
side B, it is clear that the sub-tangent 

of the curve at point M must be parallel to AB.  So naming Q, as above, the angle formed 
by the tangent of the curve and the ordinate, we would have at point M, cot Q= 0, or 
(§62) lim (dy/dx) = 0. Thus, I differentiate the equation of the curve, and I have the 
imperfect equation ydy= adx - xdx, or dy/dx=(a – x)/y, thus I have the rigorous equation 
lim (dy/dx)= (a-x)/y, or cot Q=(a-x)/y.  So we must have cot Q=0; thus (a-x)/y =0 or 
finally a=x.  Q.E.D. 



64. The procedure to follow in order to find the largest ordinate of any curve, is thus 
to differentiate the equation, extracting the value of lim (dy/dx), and equating it to zero. 
We could enunciate this rule commonly by saying simply that one must differentiate y 
and equate dy to zero; but if this enunciation is shorter, it is also less exact. 

 
THIRD PROBLEM 

 

 
 
65. Given a proposed curve having an inflection point, determine the abscissa or 
ordinate to which it returns.  Let ABMN (Fig. 5) be the proposed curve; let AB be the 
abscissa, and MP the corresponding ordinate at the sought inflection point M; now draw a 
tangent line MK at this point of inflection. It is clear that the angle KMP(†) is a minimum, 
that is, less than the angle LNQ formed by another tangent NL, and the corresponding 
ordinate NQ; thus the tangent of angle KMP(†) is Also a minimum, and its cotangent a 
maximum; but this cotangent is in general (§62) lim (dy/dx): se we must find (§63) 

)lim(
)lim(.

dx
dx
dy

d
= 0.  Q.E.D. 

Let, for example, b2y = ax2 - x3 be the equation of the proposed curve.  I 
differentiate, and I have the imperfect equation b2dy=2axdx-3x2dx, or the rigorous 

equation ,
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xaxd
 that is, we must have 2a – 6x= 0, or x= �a. 

 
                                                           
(†) This is Carnot’s terminology, which is different from our own.  Today, this would be angle MKP, not 
KMP. 



 
FOURTH PROBLEM 

 
66. Find the surface of a parabolic segment.  

Let AMP be this segment (Fig. 6); if we suppose that the abscissa AP increases by 
an infinitely small quantity PQ, this segment will increase at the same time as the quantity 
MNPQ; that is, PQ being supposed as the differential 
of x, MNPQ will be the differential of the sought 
segment.  Reciprocally, the sought segment is the 
integral of MNPQ, that is, we have AMP=�(MNPQ); 
but if we lower MO perpendicularly to NQ, it is 
evident that the last ratio of space MNO to space 
MOPQ is zero; thus the first of these spaces is 
infinitely small with regard to the second; so we have 
the imperfect equation MNPQ= MOPQ.  Substituting 
therefore the second of these quantities into the first, 
in the exact equation AMP = �(MNPQ), we will have 
the imperfect equation AMP=�(MOPQ), or AMP 
=�ydx; but the equation of the curve is, calling P its 
parameter, yy=Px, from which we have the imperfect 
equation dx=(2ydy)/P; in then substituting for dx, in 
the first of these two imperfect equations, its value 
derived by the second, we would have a new 
imperfect equation AMP= �((2y2dy)/P).  However 
(§58), we have �((2y2dy)/P)=(2/3)y3/P, so AMP = 
(2/3)y3/P, an equation which, containing now only designated quantities, and can only be 
rigorously exact: which was to be found. 

The same method applies itself evidently to the quadrature of any other curve, and 
for analogous reasons, it is comforting to be able to extend this to their rectification and 
to the investigation of arbitrary solids. 
 
68. This small number of examples should suffice in order to make known the 
character of infinitesimal analysis.  In vain, say the adversaries, it is the certain ruin of 
mathematics which admits errors, as was done, by employing imperfect equations. These 
errors could have dangerous consequences, since we have infallible means to make them 
disappear, and certain signs to know when they have disappeared? Shall one renounce the 
immense advantages that this calculus procures, for fear of deviating one instant from 
rigorous procedures of elementary geometry, a thorny path where it is so difficult not to 
be lead astray, or, shall one prefer a singular and easy route by which this analysis leads to 
discoveries?  Such is that which the method of limits offers, when one wishes to employ 
it exclusively.  For those who wish to banish the notion of infinitesimal quantities, are 
reduced, either to supplant it by common algebra, the which present countless difficulties, 
or to continually make use of the names, infinite or infinitely small, while at the same 
time denigrating them, if it may be expressed thusly, and which concerns the chimerical 
existence of similar things, of which they are hieroglyphics.  We employ, one may say, 



these terms only figuratively; but I ask if a language, figurative and abstract, is that which 
is convenient to the simplicity of mathematics, and above all to this rigor which one 
wants to support to condemn the theory of the infinite. Do these two methods not come to 
the same thing, or rather, are they not the same methods employed in diverse ways?  In a 
word, are these not always the same ideas to formulate, the same relations to express?  
Thus, why not formulate these ideas, and express these relations in the most clear and 
simple manner? 
  

E N D. 
 
 
 
 
Corrections: 
p.162 of original had “(2a – 2x) – MZ” where it should have had “(2a – 2x – MZ)” 
 
Section 37 – infer is really “sous-entendre” 
 
Section 42 – See Riemann for Anti-Dummies 59 
 
Section 44 – th end could be looked at again 
 
There only is one chapter in the 1797 paper.  The preface is not actually from the 1797 paper.  I should add the abstract. 


