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FOUNDATIONS FOR A GENERAL THEORY OF FUNCTIONS OF '
g C F A VARIABLE COMPLEX

(Inauguer] Misseration, Geettingem, 1851:
Geettingen 1867) ' gem, 1861; second unaltered editien,

If we consider z to be a variable magnitude which can gradually
&ssume all possible real values, then we call w a functien of :r‘. when
K :
m of its real falues corresponds to a single value ot undetermined mage

nitude such as w, If w alse constantly changes while g continu%?(goea
through all of the values lying between two Pixed values& then we call

this function withinf these intervals a constant or & continuous function, (1
Obviously, this definition does not set up any asbsolute law bew

tween the individual values of the function, because when we assign a
determinate value to thia function, the way in which it continues eute
side of tlhil interval remains tetally arbitrary.
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We can express the slepe functien (dependence) of magnitude w(g)
by a mathematical law so that KEL/ LB L AAEEAALAE/ we can Tind the corres=
rending ¥alue of w for every value ¢f x &hrough detemimtem
oat eperations (Groessenoperationen), Previously, people have only cen=-
sidered a certain kind ef function (functiones continuae according te
Euler's usage) es having the ability ef being able te detefmine LBE/ A AL
all the values ef z lying betiween a given interval by using that same
slope function lawm; however, in the meantime, new resecarch has showm
that there =zre analyiic expresaions that can represent each and every
eonstant function fer a given interval, This helds, regardless of whether
the slope function of magnitude w (magnitude z) is conditionally defined
as an arbitrarily givem W operation, or as an determinate
%%ﬁ opermiien, As & result of the theorems mentiened above,

beth concepts are congruent,
But the situation is different when we do not limite the varia-



bility of magnitude z to real values, but instead allow complex values
of the form x ¢ yi (where { = Lo D

Assume that x + yi and x + yi ¢ dx + dyi are two infinitesimally
slightly different valunes for magnitude z, which correspond to the
valuesg n.+ vi sand W + vi 4 du + dvi. fer aggnitude w, So then, if the
slepe function of ragnitude w (g) iz an arbitrarily &iven one, then

generally speaking, the ratie du ¢ :Yili changes for the values for
' dx +
dx and dy, because when we have dx ¢ 4yl w y then
du  doi
dz 4 dyj

=i+ 5+ (-2
+ifm-24 §—§+§;“)=‘]§§%§—%’—yj
=3EH )+ - 2
-G+ 4 2]

However, regardless of the manner in which we define w as a function eof
$ through compounding these simple % operatien, the vd ue of
the differential quoetient dw 18 always independent of the specinl
values of differentisl dz,# : Obviously, not every arbiirary slope

# This preposition ig obviously justified in all cases where, by
Reens of the ruleas of differentiatien, expressing '&E by £ i8 permitted
by expressing w by gz, Thig propesition's rigorous EEAALAYIY universsl
'va.lidity is valid from new en in,

function of complex megnitude w(complex megnitude £) cen be expressed
in this manner,

Ve will base our following investigati ons en the characteristie that
we Just emphasiged and which belongs te all functions thet are in any
way definable by % eperatiens, We will congider suoh functiong



defini tien without Proving for new its universal validity and igg
&dequacy for the concept of a slope function that can be eXpressed
by M%%Cf‘bperauens.

We will call a variable Egmplex magnitude w & function of another
variable complex magnitude g, if the Tirst function charges in such g
w8y in connection with the second functior, that the value of the
differential quotient dw is independent ef the value of the differe
ential 4z. e

2.

We can coneider magnitude w, as well gs magnitude g, to be varig~
ble magnitudes, which ecsm assune any complex value, Our comprehension
of guch variability, which extends itself into a cennected field of twe
dip'ensiona, can be substantially facilitated by acquaintence with
spatial preceptien,

Assume tle t every value x + yi of magnitude z is represented by
point 3 on &Eé (Evene) A, whose rectangular coorfinates are X,y
and that every value u ¢ vi of Ragnitude w 18 represented by point Q
sn «aﬁﬂgge B, whose rectanguler coordinates are ® and v, Each slope
function of magnitude w(g) will then show up as a slope function of
point Q's position according te peint O's position, Assuming that
every value for g corresponds to a determimste value for w which in
turn is continu&w chenging itself in conjunction with g, or in other
words, that u and v are %&’i&"t’ functions of x ang Y» then every peint
on Mee X becomea m point en Me B, and, generally speaking,
each line corresponds fo one line, and each conmected of the

VRFAC
fé;nf Sggﬂ‘%lg;’mnds to one other connected Mﬁﬁ%. We can

thus represent this elope function of magnitude w(z) as an image of
M A projected on M B,

Je
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Je
¥e will now investigste what Properties this image has when w is
& function of ccmplex magnitude z, i,e,, when dw is independent
frem dz, | a
Ve will designate ar indeterminate ppint on.ﬁ%ﬁéég; A in the
vieinity of O by ¢, and ite image eﬂ-é%ﬁ@gie B by q, in edditien te
Lesignating the values of magnitudes £ and w gt these points by
X+ 31 ¢ dx + Gyl end u + vi + gu + dvi. ¥We can then conisider ax, ¢y,
and du, a&v to be rectangular coordinates foer ppoints e and qQ in re-
ference te point O and § ag the points ef erigin, Th4r/14/ And when
we have dx + dyf = e and du + dvi =9 , then the Ragnitudes
B9 Y  become polar coordinates for these points with the sane
Points of erigin, Now if o and ¢'*' are any two de?erninate positioia
of point ¢ within an infinetessiaal vicinity ef O, and if we express
the meaning of the remaining symbels that are dependent on ¢' and e8!

by corresponding indices, then the postulate du' + dv'y =

dx* + dy'i
du'? ¢ dv*''f  gng consequently
dx¥T ¢ dy¥'3
du' + dp's - e r i) ¢ D
au” taf'-‘.'"%”""" Mo H%‘”. ey,
fnm ‘h.iCh ’7'; - :‘_ ar,d ‘J' —_— w" -— q)' — Q", ] ile1 # .bhe anglea ‘!ﬂ,‘/,
V= .

KAA/APA/  ©%0'! ana q'Qa'? are equal in the triangles ¢'0e*' and
e'Q%'? and the sides that include them are proportional to each other,

equal, eand that this also universally holds for the smallest segments
of surface A and their images on surface B, The enly exception to this
theorem occurs in those specialc ages when the matually cerresponding
changes in magnitudes £ and w do not occur in a finite relationship,
This was tacitly assumed in the derivetion #

#One should aee the following on this subject:
"Universal Solutien to the Problen: Describing the segments of a given
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SURF{CE

80 that the images of what h®e described are similar down te
their smallest parts" by C.F, Gauss, ( Thig was published in Astronc-
misgche Abhandlungen, herausgegaben veon Schumacher, Drittes Heft,
Altensg, 1825, as the answer te the question in the contest set up
by the Royal Society of the Soienges in Copenhagen for the Year 1822,)

( Gausa Werke Bq, 1v, p. 189,)

4,
When we transform the differential quotients du + dvi inte the
% v. ey Buly . dx +
forn G5+ 720)e + (5 - 3) v i
dz + dys 2
then it is evident that we will get the same values for any twe values

of dx and dy only if 7=  and s2=—% o These conditions are
alse necessary and sufficient Fh/¥d4% in order to have wa u ¢ vi
becone & function ef £=x+yl, and the following individusl terns
of this function alge comes from thepa conditicnas

FHfi-o el
Thegse two equations form the foundation fer the investigation of the
characteristics that an individual term in such a function is coge
sidered to have, We will allow the preof for the most important of
thege charactefistics teo be preceeded by a thorough consideration eof
the entire funotion, But first, however, we wil}l discuss and define
séme points which belong to the universal dom in in order to amoeth
out the ground fer this investigation,

Se

OVE A
extends nh-‘se m A, ¥e have chogen this wording, which makes it
inoffensive ‘to speak of plains lying en tep ef one another in order

i® leave open the Poasibility that the location of point O repeatedly



in guch g cage tha‘t:flsgggcegts M which are lying on top
of each othep are not connected I)(/A/It){,é/;tﬁ‘/ﬁ/lﬁ:(g along a line,
for thig would cauge ¢onvelutiong ip the Plains, or g fissure 1p the
Begments lying on top of each other,

when the boundary ig given &ccording te location ang direction ( l.e,,
the boundary's inner and outer side); however, the actual course of
the boundary can still develop differently.

In Teality, i1f we draw ap arbitrary line through the 8egment of
the w&ge Ccovered by the m then the mzber of ;%s egmenta

the change ig ~l, and thig holds everywhere, Every bordering
8egment slong the edge of this 1ine continues oo arry en in g totally
determineq Ranner go long as the line dges not touch the boundary,
because the only place any LA SALER) 4/ bt/ gty Ldeterninateness
can eccur at all is in g isolateq point, either in a Beolateg point

on the line itselr, or in an isolateq Point & finiie distance frop

the line, Therefore, when we WAL/ 44 limit our ®bservations o & passing

contiguong %ﬁse@enta, the saount of which {4 equal en every side,



L,-even--though.it can change §p & couple

of fig Points for Bpecial
Positions o L,

€ 8 certain point _
50/‘?64&5
(i,e., elong the anterior Seguent of L) the R segmentg ) oy,
SURICE
ose Q. are connected in

B ai’ aé’ocoaﬁ:
472 a
.?-?l.l.t_.:.‘thﬁ.t,,b,e.lﬂw the same Point there are sy thes-\ﬁig Segments
mq,,,,a,.,,...a,,_,. where .. - Cu, Y

through the Series 1, 2, *++Rs Then g pojnt above o thatm
VAR 9ce
" stands fop 8 in &) will eng up in3,

Cronsgey over to

&re only differenti ated

side under s

#d point o &oing from jeps to right (2)
indice of tne 3¢L4cE

Poiniy (me1) order of
T. By applying this gane Oreration o the Temaining n-m %
aegnents, thege %

In thig case,



8
When we are given the Position and the direction of the boundary
around T and the position ofits branch point, then we can either
completely define ¥, or we can limit it to a finite number of verious
forms, If it ig the latter, T is limited to the extent thet these
determining points can relate to the different Waegments that lie
on top of one another,

Generally speaking, we can obviously consider a variable Ragnie
tude that gssumes a determinate value which constantly changes with
the locagion of every point O jin Plain T (i,e,, without excluding am
exception in isolated lines and points ) te be a function of x, ¥y,

 tne concept of a function does not give this linitation in ite
self, but it is necegsary to be able to o‘.'pply it to infintesimal
calculations: for example, a function which not only has the value of
1, but the value of 2 alse for a commensurable x and Y, cannot be
subjected to either differentiation or fointegraﬁ on. And so we can
net directly subject it to infinitesimal calculations, either, Thie
arbitrary limitation which has been imposed on plain 7 here will be
Justified later.

Moreover, when we will talk ebout the functions of Xy ¥ in the future,
we will define the concept of these functiens in this same manner,

But before we begin to congider these kinds of functions, we will
bring in some some discussion about the continuity (connectedness) of
& plain, limiting ourselves to thoge Plains which are not divided
lenghtwise by a line,

6.
We will consider two w segnents te be connected or to belong

to one piece, when we can draw g line :l’rom & point on one gsection

(o LR
through the ﬁ'e interior to a point on the othe w segment,



¥hen this possibility does not exist, we will consider these%%
segments to be separste,

Our investigation of the continuity (connectednesg) of a ;ﬁn%
18 based on cutting up the Plain into transverge segments, i,e,,
through lines which eimply cut acress the interior « not cutting ene
point mere than once = going from boundary point te boundary point,
The latter boundary point can alse lie in a seguent that is sdded te
the boundary, or thus, in an earlier point on the trangverse cut,

We gay a%ais connected, when every {ransverse breaks it
down into pieces 80 that <they are ei ther 8inply connected OR multie
Ply connected,

Pedagogical theorem I. A simply comected% A i3 broken
down by any cut ab into two simply connected pieces,

one of
Assune thet MJNENEY these pieces ﬂ not partitioned by cut cd,

We can then obviously see that al though nonM

RSN of this piece's endpoints, nor endpoint ¢, nor both
f‘
endpoints fall on line aby, we can get a connectedw by cutting
A that is contrary to our postulate by eatablishing contaet along all
of line ab, or along part of cb, er along part of ed,
VRBICE
Pedagogical Theorem II. VYhen we breaks& T down inte a
PLy
system of T, of B, simply connected-%n seguents by using( an
amount nf of outs 9 &and when we break it down into a system i‘z of

7 |
¥ Dividing up a %thmugh various SN cuts always means

&@3uceessive division, i.e., that kind of division, where the

Planes that result from & cut get partitioned agains by & new cut,

17
of =, %egments by using an amount R, of cutis 95s then n, - =,
cannot be larger than n; - LD
If any line 9, does not entirely fall into the q; cut system, then



&t the same time it also becomes °ne or more of the cuts qé acress
%%Tl. We can consiger the endpoints of cut qé to bes

1,) the 2#2 endpoints of cut 9% except when their ends coire
cide with g Begment of the 1ine systen 93

2,) any aversge point on cut 42, where it joing up with sny
&verage point enp line 93+ except when the former point ig already ou
another line qi, i.e,, when it coincides with gne end of cut Qe

We shall now: define u as Loy Zrequently linea from both syutemg
®meet or cross in their course ( we will count & single common point
twice), define vy &8 how frecuently an eng section 93 coincides with
& middle section 95s and define ¥, 88 how frequently an end ‘section
95 coincides with a midgle section.q’. Finally, we will define vy as

Points for cut qé. But if we take both cases together, then they
contain all the endpoints, and ea.ehendpoint only ence, Therefore,

the number of cuts ia: 5 bt
We can get the number of cuts qi of %22 by a totally similay
deduction, which ia baged on the lineg I —M-;A-L‘-"r,
-thus = n; + s, %& T has now been ebv:l.ouely transformed, through the
B, ¢ 5 cut qé, inte that Yery ssme % in which !2 is broken down
by B, + 8 cut q; o However, what we get out of 1, #Kﬂfﬂ,@i/ﬂ// as
& result orf R, are simply connected Pleces, which break down according
to Thecrem I, ang through D, + 8 cuts, inte B + 1, and s%ﬁ"ce
Segments. From thig i+ would have to follow that if R, were smalley
oumber ce

than IR T B;, the 7NN or segaents T, produced by the
B + 8 ocuts would have to more tham By ¢ 8, which ig absurd,

dccording to thig theorenm, it 4P n does not define the number of

cuts, then n describes the number of Pleces, pn.m being constakt for
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all partitions of a plain into simply connected pieces. For if we
obserbe any twe determinate partitions by n; cuts inte B; Pieces,
and by B, inte m, pieces, then if the former yieces are simply
cennected, n, -~ B, = or smaller then n, - n.’. while if the later
Pieces are simply connected, then B, - n} = or smaller than n, = m,,
¥hen both conditiens eccur, L ~m =1 = l‘.

We can apprepriately call this number the * degree of connection®
of a plain; it is

- according to the definition - decreased by 1 with every cut,

not changed by a linciERESREEEEEY »inply cutting ZNNENEE
from an interier point through the interier te a boundary point or
to an earlier point on the cut, and -

increased by LAEEEEEEINNY through an interior cut that is unie
verselly simple and that has two endpoints,

because the first case can be changed by one cut, but the last
case can only be changed by having two cuts in ene cut,

And last of &ll, we can obtain a JEENIEN degree of oonnection
from a%‘econsisting of several pieces if we add the degrees of
eonnection of these various piesces together,

In the follewins section, we will generally limit oubselves te
a%fconaisting of one section (piece) and we will suit ourselves
by using the ertificisl description ef a simple, twofold, ete.
eonnection for its commection, so that what we mean by an n-fold
connected m& is one which is diwisible by n-1l cuts into a simply
connected s

When we consider the slope function of a boundary's connected-
ness in relation to the comnectedness of aw it is resdily
apparent that:

1) The boundary of a eimply cennected 5‘ﬁﬁ(";’wceamarily ¢ONe



sists of GEEENF one encircling line,

If the boundary consisted of fragmented Pieces, then ocut q,
which links a point in gection ‘ region, piece) & with a point in g
nother sectien b, would only be separating connected Wﬁégnents
from each other, This would be e becamse inside the% along a,
a line would lead from one side of cut q to the opposite side, and
therefore q would not partition thej%, which is contrary to thae
supposition,

2) Every cut either increases tk number of sections in the
boundary by 1, or decreases it by 1,

Cut ¢ either connects a point on a boundary section a with a
point en another boundary lect:l,‘on by « and in this case, all of these

. - ARO
together form the series o, 4. b ¢ ‘" forming a single boundary d

one encircling% - '
PreEce

or cut q connects twe points on one boundary emgpeems - and in
this case the segment breaks down inte two pleces through both ef the
end points of thig cut, Both of these Pieces now forn, together with
the cut, a section of the boundary that circles back into itsels,

or finally, ocut q ends at one of its earlier points and we can
consider it as composed of one line ¢ that circles back into itsels,
and of another line I which connécts & point on ¢ with a roint on
boundary segment 8 = in which case, o forms one part ef, and a, 3,
o,L, form another part of & boundary & that oirlces back inte
itselr,

S50 there are either =in the first Place, only one boundary pz-gc.g
SEEN- in place of twe, « or in beth of the latter examples twe bound-
&ry portions in place of one, from which eur preposition comes.

Therefore, the number of . aiscl comprising the boundary of am
n~fold comectedWee@mt is either = n or is mmaller by a pre-

cise nuaber,
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We can even preduce a collary from this:
If the number of bowndary @that an n-fold connected%cf has
is = n, then this WDreaks down into two separate nieces with every
cut in the W's interior that circle back into 1taelf, |
The degreef of connection is not changed as result of this, and
the nmumbers of % in the boundery are increased by twe; so if
AEE the Wwere a comnected one, £Z/4/ it would have n-fold cone
nectedness and n+Z boundaryw, which is impossible,
Te
Assume that X and ¥ are two consimnt functicns of X, y which are
in sl1l points ¢f the %@ T, whichin tum im over A, Then
the integral that extends to all the elements 4T in this ol 5. P50 <
.[(f,i‘.;. %_;:) AT = —f(xcuse + ¥ cosg)ds,
if we describe ¢ as the inclination egainst the x axis of a straight
line drawn from the bounda:_'y towards the interior, for every point en
the boundary, and #A/iﬁjﬁfiﬁﬁ/ if we deseridbe 1ms the inclingtien
against the y axis, And Tinglly, thie integrsl equals the ether one
eollectively

if this integretion coversfall of the elements ds gY/£f/ that are en
the boundary line,

In order to transform the integral fi‘} ar we will partitien
Y7, o
the segment of % A that is covered by% T into primary bands,

(Elementarstireifen) by meens of a system of lines patdllel to the x

axis, And we will do this in suck a a way that every one ofw

¥'s branch points falls on one of these lines, As & result of thig pre=-

condition, we get eme or more differentiated trapizoidial shaped pieces
developing from every one of thess mc 6 segmentis that falls ef one
of the lines. Given then any undetermined primary bend whieh segregates
the element dy out of the y axis, this band's contribution ® the
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value of . | aé“' will obviously be ‘dyj—-—d.r +i1f this
integral is SYP4dd4d Lextended through this or these streight lines
belonging to ok ﬁ’CGT these straight lines falling en a normal pre-

ceeding from a point dy, If we descr:l.'be the lower endpoints of £YAL/
XIAE/ 110414/ +these lines (i.e,, which correspond to the smallest values
of x) as 0,, O,,, Oveesthe upper endpoints as 0%, 0'*,0"**, the x-value
in these points as X,, LeoseecesX®, X0 _ .., the matching elements
which are segregated by the planar bands out ef the boundary as

d,ds,,....d¥,ds",.... , and the value of in these as ¢,: ... 1Y S
then, J Cdr=—X X —X_....
+ X4+ X" X7 ..

It is evident that a.ngel E becomes acute at the lower

end points, and ebtuse at the higher endpoints, Therefore
dy = cosf ds = cosf ds .. ..
e —costli = - cosE"ds" R

Through substitution tis velue results in sf,Y iz = — ZXcntds,
where the summation relates to ail the boundary elements which have
dy as a projection in the Y axis,

We can NN obviously exhaust all of the elements in %8’09
T and all of the elements in the boundary by the integrationof all
AW &y that comes into consideratiom, Considering this envirenment,
we get, J.%ng——JXem‘ds
And we get a8 a result of totally similar conclusiens

f%;,gr= —J.Yvus nds
and consecuently f(§§+3—, iT = _f(xco.e_}_no”)d. Q. E.D. _
8.

Gonside_r a boundary line broceeding from an establishegd starting
point eut inte & direction that will be defined later, We will desew
cribe the length of this boundery up to an undefined point O by Be
Next, consider the distance of a normal 4NN set up from spoint 0
to en undefined point O, which we will call p and which we will con-
sider to be pesitive on the inside of the boundary, Then we can cone
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sider the values that x ang Y have in Point 0 to be functions of s
and p, ang '!_:lg_e partial differential quotients
g—:a-cosﬁ, %-—cosm %:-:—-i—_coaq, %—?co‘aﬁ, TURN ovT 50 THAT 177

in the points of the boundary line, -

WERRSGER these differential quetients the superier
in whichcases the direction, in which ve congider magnitude s to be

growing, includes an equal angle in with Py Just as the x axis
includes the lower (angle?) with the Y axis, when ene is countere
Pesed to the ether, We will sssume thigs direction to be such in all

notation shows

seguents of the houndary so that 3:-2,’,'

and eonsequently ﬁ——gf |
- Which does not at a1 Messmtially infringe upen JSfRFr
our results' universality,
We can 2lso expand these detemixiationa to lines inside of T,
And in order to determine the signs for dp and ds, if we want to
continue their mutual dependency (slope function) as it wac previously,
¥e can add on a stetemcnt whhih will drtermine the gigns fer dp or ds,
In creating such an encircling line, naturally we will indicate which
of thewc%egnenta separated by such a line also serves as this
line's voundary SNl = ‘ IR
ARG Tt is through this that we determine the sign fer gp,
mot with en encircling line, tut st its beginning pbint, f.e., at
the erdpcint where s egsumes the smallest wslue,

¥her we introduce the velues we got for cos ¢ snd .5, from
the preven equetiens in the previous chapter we will then get, teo
the same extent as we gt in the previous chapter,

J'(‘;g-{- %-; AT = —f(x% & Y%’)ds -f(x% - r¥a.
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When we apply the theoren fror the conclusien of theprevious
.chapter to the situstien where %%—0
in 211 the segments of the plane, then we get the fsllowing theorems:

Coyr/a s '
Ie If X and Y are finite and aatigwlid for all the points in 2,

snd -SNERERCER. 1t they Previde satisfactory functions for the

equation, ’3;‘,‘5-!-%“0
then 1f we expand through the whele baundary for T,
J(t::;f-;- Y 3¥)ds =o.

If we can now imagine an arbitra.i-y surface T, that is stretched
out over A, breaking down into two pieces T, and %, in sn arbietrary
manner, then in relftions to the boundaries for 2,5 we can censider
the integral (x4 ey, te be the difference of the
integral 1n": elation to the boundary fer !1 and !3, while in the case
where '1'3 Tuns right up te 21'5 boundsry, beth integrals concael each
other out , However, all the remaining elements correspond to LLEdEALA/
1;!/24//1{5)&&(#}// an element in the boundary of 1.

Through this transfermation, we can get the following out of

Theorem 1,: i évy
- IT, The value of the integrar J (X5 + ¥,

oenly if it dees not g€ain or loge any seguents a8 a result of
this, If this were to happen, the preconditions for Theorem I would
not be fulfilled, ‘

If the functions X and Y suffice for evezw?f”fegi%t oL wmpibaney- T
1n the differential equation that JAf we just described, ‘but if they

Z.
are afflicted with M&&, in iso0lated lines or Points, then

We can encapsulate évery one of these lines angd Points in an arbitra.rily
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small plane segmert , like a seed pod. We then get the following by
applying Theorem II,:

III, In reference to the entire boundary ef I, the integral
J ; +Yap) ds
P
is equal to the sum oi’ the integral
in R relotion to the eneapsulation of all
sitiens. Naturally, this integral alsc has the same balue for every

ene of theaOW ro matter how compact the bound-

aries are tha encircle them, .
[1SCINTIVGo,
This value is mecessarily equs.l to mull for a eimple*%—&yf

& , ‘
<yt point, if the distance of point O from the (aCairls point, ,
becomes infinitely small at the same time that o¢X and ey do toe.

Discos TTALYL ILR)
= - T

We can then introduce the polar coordinates © % 4in reference te
such & point as a atarting point and in reference to an arbi trary
intial direction. Finally, in order to encapsulate these polar
coordinetes, we can choose te draw a circle around them that kas the
radius o s 80 that the integral that relates to this is

/( R" od'p

Consequently, it cannot have a valne for ., different than null,
2ONNESESSERNE because jus ss we can alweys assume x to be
so small, we can alse sssume ¢ to be Ad tee, a0 that irrespective of
the symbol (x2° Bty 3;) » ¢ can become gmeller than ;*‘
SN for every value of v , Consequently,

in

uj(\ﬁ,‘,'i“ ?) edy <
IV, XLet us teke a simple connected% extended over A, 1If

the integrals J(Y?— Ag-)ds—o and _j x“.,.yry)d,
they being integrals that cover the whole boundary of every.ﬂv
segment, then these integrals willhave the same value for any twe



to 0 in thege integralsg,
The pair of lineg 8; and 8, which connect the points Oo and 0
fora together a line 83 that cireleg back inte itself, This line

» and there.fore it Decessarily follews that one of these limeg
foerms the entire boundary for one of thege Segment s, while the intee
gral ‘jq(ij—X,",i,!) ds JF entends m through this plape
ecuals gere in accordance with the prepe.
sition, ‘*Phig also holds true for the integral that extends through
all of line L if we consider magnitude a8 to be increasing evVerye
where in the seame direction, Therefore, the integrals that exteng
through lines 8 and 85 mst cancel egeh other out, jf this direc.
tion remaing unchanged, 1., 1P 3¢ goes in one direction Tfrom 0.
te O, angd in the other direction frem 0 teo 0.. Se 1f the latter
direction is changed, the integrals become equal,
If somewhere there is now an arbitrary W Ty in which,
generally speaking, X +§;—”
then we cgp next JNNEERE: exéiude the inconsigtencieg if this 1 new
¢essary, go that in the relnaining
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cessary, so that in the remaining/fsections ol —the-piane,

SO —xi)a—o

for every-sp&me segnent, This is then partitioned by cuts into a
simply connected @ikl T, ACCORDINGLY, our integral has the same
value for every line that goes from a point 0._ t:: another O ingide
AR ¥, s value, for which the notationm f(Ygf—ng)dS
suffices as shorthand, helds O, to be fixed am; 0 to be moving, We
cen also consider it to be a determinate function for every one of
0's poseitions, regardless of the course of the commecting lines,
Consequently, we can conaider it to be a function of x, y..

We can express the change that occurs in this function by dise
Placing O along an arbitrary 1linear element ds by (Yg_'f_ X%) ds
and the change in this functien im constant fer T* everywhere,
as well as being equal along both sides of a cut across T,

Ve Therefore, wheno we consgider 0. to be fixed, the integral

2= f(r}r - x2)a,
forms a function of x":y, which is constakt everywhere in 1"'. How=

aes
ever, when this functie beyond the cuts in Ty it changes

tmwéi:ié/A/éddéﬁ#f/ﬂﬁ#i#ﬂ/ﬂﬁﬂé/ﬁé/é#/ﬁ/ around a functien
along the cut frem being a branch point to being another constant
magnitaude, The partial di fferential quotient for thig is

Ira a7 X

== ==
The changes which we brought about by passing beyond the

cuts are dependent JJE on heving the same number of cuts as there
are megnitudes that are independent of each other, For when we g6
this aystems of cuts backwards e dcing the later 8 egmnents first -
this change is generally determined when ite value is given et /7€ G864y

every cut. However, the later values areindependent of each other (3),
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le,

If we replace the functions that have been described by X
up to now with # :"-“'5-:- snd “gf—"'gf-
for Y, then  S+3—v(E+l8)_ @u, oy
end if the functions u and u? satidfy the equations
then af.f..%}’.'_n, _ ’
end we can find the application of the theorems in the previous
chapter in the expression J‘(ng"l' Yg%)d"
which is equal te "f(“g—}'-—u'gf ds

°

£
Now, if in relation to function w we make thewv AL L4

that this function, together with its first differential quotient

does not telerate any possible kind of W along a

line, and if we also assume that £4£/4f ¢t Function u becomes
infinitely small for everyw point as the distance o

of point 0 from those very same , g_: and 03‘; does at the same
time, then we can oonclu;:le from the netes to gection III of the
Previous chapter that we can keep on di sregarding tht‘-ww”@
- in u, '

Therefore, we can ssume a value R of ,. for every straight

line that proceeds from meoint. 80 that

du Ju ¢z du 2y
% Ot e ot

which always finite at its lower end, We can alge déacribe U as

the value of u for ¢=£i M . for every intervall, regardless

ow
ef the signs of the greatest value for the function ez, »
Then, following the same interpretation, «-U will always be
<M (log ¢ — log R) » and consequently, '0(“-0) and thus

ou along with ¢ will be come infinitely smal]l gt the



AR And according to the Propositien, the same goes
au
u =

for o and °% . Consequently, if u® is not burdened with

6 IR S
NW the same alse goes for

9(“2:"—“'-;‘:) and P(“%'E—u'é?); ;

the cases discussed in the previous ehap;er also making thier
&dpearance in thig,

We will even assume further, that%f, which forms the
site for point 0, has extended over A everywhere, and that an
arbitrarily fixed point O., where u, x, y have the values of

%
Wt Xg» and TJo* 18 in this same extended%f If we .consider
the magnitude §iog(x— Z) 4y —9.)) =logr '

to be a function of K;Y, then it has the characteristic that

@logr o log r
TRt g =0

o
80 that it 1s only subjected to mwwhen

Temz,,ymy,, « Thus in our case, this only eccurs fer
ene point en %.
Aceording to Article 9, theorem III, when we replace
u' with leg r, f(n“;;' — logr %) ds ‘
the entire boundary around T is equal te this integral #hth régard

te an arbitrary encirclement of point 0.. So when we want to select
the periphery of a circle in this case, where R has a constant
value; end where by starting out from one of the points on the
periphery and Proceeding in a fixed arbitrary direction, we can
describe the are up to O in terms of sSegments of the radiug by ,

then the integral directly above is equal to - J.ua!—;_urdcp-—log , J:f;’fds

i=
or therefore te (4) fg—"ds—d ist, = ——‘jztdtp,
r v
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whose velue for an infinitely small r corsses over inte
R Covivioes
%" when u is .S in point Oo.
Therefore, in regard to the Propositions we established for

w and T, when we have an arbitrary point 0. in whiech u is constant

3 ’
inside the %ﬁ?w u.,==§-l:-‘j (log r%—na-lg:qu

in relation to the entire boundary itself and

i g

in relation to a circle drawn anround Oo. We can draw the following
conclusions from the first expression in this paragraph:

.= Pedagogical theorem, If a functien Rywhich is inside of
a % that itaelf simply covers ‘% A everywhere, gen-
erally satisfies the differential equation® J2+Z%_,
80 that,
10 The points in which this differential equation is not fulfilled

are not pasd Mceﬁgnents,

2 3 Q15Con HAVVous
2) The points in which “ 53 5 becone ENNENENL, do not
Cot AV S LY -
—% satiafy sny line,
3) . The magnitudes o5 0%3 become infimitely small feor

wemw point as well a3 for the distance ¢ of
point O from thet same inconeistent point, ‘ |
4) u excludes any W that can be cancelled out by
changing its value in isolated point,
then this function u is necessarily finite and JNNREEREDF constant
along with ell of its differential quotientes for all eof the
points inside thiawc‘o

In reality however, we will consider point 0° to be movsble,
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ras doic-n
S CE TNy N R
. h - ! " dlogr
80-that in the expression, f (los'%—" “c'}':_)d’
dlogr Bdlogr

only the valueg lgr, —,:"-5‘. "a?" change, However, these nagnie

tudes area}ﬂ'hte &nd constant functions of Xo? Ygr for every
element in the boundary, so long as 0. remains ingide of P, and e

in gdditien to 21l of <their differential quotients, These finite

and constant furctions can be expressed by the brokem ration,l
functions of thease magnitudes, the functions thet onlyhﬁxﬁers of r
in their denominators. W 4nd this also holds for the value of
our integral, and consequently for function uy itself,/y!cause under
ZYg our earlier m function uﬁﬁdon.‘l:g ,hége a velue dife
ferunt from the NN value of cur integral in those isolated
Points in which 1t would be Shesdlblldlll ana thie' Possibility has
been eliminasted by prososition 4 &f our ‘ii;dagogical theorems,
11, |

Using the seme preconditions that we applied to u end T at the

end ¢f the last chapter, we get the following theorems:
l, ¥hiem u = O along a line, and %,':'- C, afid then u = O everywhere,

Fext we can prove that line *, where u « O and g; =0, cen not
form the bouncdary of surface segnent &, where u is positive.

Giwan that this occurs, then we can cut a piece out of V4 THia
Pleced boundary is partially formed by 1, end partielly by a cire
cunferential line, #IEEEREREEF In addition] this piece doel&"-nqt .
contain point, O,. which iz center for tie circumferential line,
Poberte® and this whole corstructionis pessible, Then when we ¢epw
cridbe 0's polar ccordinetes in reletion to O, by # n9 , we get

'].logrg:lds -fu LM ds =m0,

expanding through this piece's entire boundary. As a cansequence,

jua’p + /&7 Rjaayl/s = O,
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- -

our assumption for all of the arcs that also belong to the 'boundary, would be,
J.a“ ds == 0 1
73 - or j udg =0,

S

-

vhich is irreconciliable with our presumption, that u is positive in a's interior.

In a similar manner, we can also prove that equations u equals O and %f

equals O camnot occur in a boundary segment beonging to a surface piece b where

u is negative,

So if u equals O and g; equals O on 2 line in surface T, and if u were to
 be different from null in any one of surfaceT®s segments, then such a surface
segment would obviously have to be bounded either by this line itself, or by a

surface segment where u would be equal to O, So in any case it would be bounded

du

by a line where uand '35 would be equal to O and this would necessarily re-

turn us to one of the assumptions we negated a few lines back.

-

II, When we are given the values for u and g;_f along a line, then this de-

fines u in all segments in T,

If u and n2 are any two determinate functions which satisfy the conditions
1

Pl -

that we imposed on function u, then these conditions also hold for their difference,

-

u) = U, and we can show this right away by substitutihg this difference into

these conditions. And if w3y and up as well as their first differential

-

quotients, converge towards p when they are on a line, but they do not do so
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ﬂ!\_:"_'.} --=- 0

in ancther surface segment, then %, — thy =0 and 7r along this
1ine; without being equal to 0 everyelse; this would then be contrary to Theorem
I,

ITYI. The points inside of T where u has a constant value necessarily formg
lines if u is not constant everywhere., These lines then divide those surface
segments where u is larger fram the surface segments where u is smaller,

This theorem is composed of the following conditions:

- u canmnot have iether a maximum or a minimum value in a point inside of T,

- u cannot be constant inon 1l y one section\ Qf the plane. °

- the lines in which u eguals a cannot bound b;th sides of the surface seg-
ment vhere u = a has the same symbol,

-

As we can easily see, theorems which always have to lead to violating the

equation we proved in the last chapter; "o‘-",'l?- I udyp
2x ’
or 3/ (8 = ) dg =0 are therefore impossibles
12.

We will now return to considering a comples variable magnitude w equals

w plus vi, and we will consider it generally ( i.,e., without excluding the

{50,428 ' .
exceptions m“ lines and points «) This magnitude has a determinate value

-

CONTINWOUS LY . o
for every point O in surface T thot eswsi@@y changes with point O?s position,
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2

and in conformity with the equations gy ~22,

<2
afy

we will characterize this property of w according to the way we did earliers and so

we will call w a function of z equals x plus yi. In order to simplify what is

-

ha
coming, we will pre-establishe that a discontinuity/gantbe Y climinated by

changing its value in an isolated point cannot occur in a function z.

-

First of all, we will at*ribute surface T with a s imple comnectedness and with

simple expansion everywhere over plane A,

Pedegogical theorem, If function w(zd does not hove any break in its continuity

-

‘a.nywhere along & line, and furthermore, if w{z=z!) becomes infinitely small as it

approaches point O for any arbitrary point O' in the surface where 2 equals z', then
ContiNvoys
this function is necessarily finite and wssstemd for all points inside the surface

anc for all of its differential quotients,

The preconditions which we set up for the chan-es in magnitude w break down

s—l'=0‘"‘

when we substitute ford and v in
1) %__.g.;..u arcd 2 %-3+g§-=0

for every segment in surface T; and when
3) function u and v are not discontimuous along a line;

‘P
LY e¥  and ev become infinitely small along with the distance from

,point @ to O' for any point OY,
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(5) function u a2nc v exclude any discontinuities that can be eliminated by changing

their values in isolated points,

As a result of preconditionms 2, 3, 4, integral J.(ui;—:-’—a%%) ds
vhich extends to the boundzries of surface T, ends up beins equal to O for for

- -

.every segment in surface T, according to chapter 9, III, According to chaoter 9,

” [/]
£ 5 3
IV, integral J (u 5 “’F%) ds has the same value for every line

- - ‘ -
going from Oo to ®. Additionally, when we consider 0 as fixed, this integral forms

. -

function U of x, y which is necessarily constant u» 4o isolated points » and for

au ) 2C - )
which the differential quotient ¥ e — for every point, {according

to 5). But by subsiituting these velues for u amd v, preconditions 1, 2, 3, change

over into the conditions of the pedagogical theorem at the end of charter 10, In

this case therefore, function U, alons with its differential quotients is finite and

-

ConyiNvovs . ] .
R for z11 points in T, and this also hllds for the complex function
gg U .
“=ETH Y and its differential quotients according to z.
13.

Pl

We will now investigate what happens when we assume, still retaining chapter 12%s

special preconditions, that (P — % . =gy no longer becomes infinitely

small for a determinate point O as we infinitely converge on point O. In this case,
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-

as point @ converges infinitely close to point 0', w becomes infinitely large, We

J :
can assume that when magnitude w does not remain with . ;— JV the same series,

= # 5

i.es, if both of their quotients approach a finite bourdary, then at least gf the
order of both magnitudes will be in such a finite ratio to each other, that a power
of ¢ will result whose product in w for an infinitely small ¢ will be either

infinitely small or remain finte, If 4 is the exponent of such a power, and f£/4
tz-z)"
if n is the next largest whole number, then magnitude E”"’"".""W
{z-’-")” ,7
will become infinitely small with ¢- , and therefore (gg#)"'v

is a function of z ( because s (@ ~N"'« 1s independent frem dz)
s

which M satisfies the Preconditions in chapter 12 for these surface

=1 CoNrIvels
segments, Consequently, (z-z*')® 1 is also finite snd et
in point O0'. If we describe its value in point 0' by T - "

then (—N—tw—a., is a function whichis consinueusly at this
point, and which # = O, Therefore, it becomes infinitely small ﬂﬂ(
through » From this we can cénclude according to chapter 12
that ('_1-‘3")"'""—:% is a cfhffédf/ continuous function at

point 0', By continuing this procedure we can see that w gets turned

into a function which remeins continuous and finite at point (o)
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through substracting sn exvression from the form _u .+k_‘__¢;;,).,+....+

—£F

Gyt

(.C _ ‘v)n—i

Therefore, when this chenge occurs according to the preconditiens
in chapter 12 so that function w becomes infinitely large as [}
converges infinitely on » point O' inside of gsurface T, then this in-
finite quality's order (when we consider a megnitude that is increasing
in reverse relationship to the distance as an infinite magnitude of
the first erder) when it is infinite, wi}l necessarily be a whole
number, And if this number = m, then fuJ‘n.etion w can be changed into &
function that is continuous at this point 0' by the addition eof a
function that contains 2m srbitrary constants.

Note: We consider a function as containine an arbitrary con-
stant if the éossible varieties that it agrees with encompass a con=
tinuous domain of one dimension.

14,

The limitations which we established in chapter 12 &: 13 fer
surface T are not essential for the validity of the results we acheived,
It is plain that we can surround any point in the interior of an

arbitrary surface with a piece of the same surface. This piece will

have the same properties that were presupposed for tha* surface with
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the sole exception being the case where this point is a branch point

in the surface.,

In order to investigate this case, we will assume that we can draw
surface T,or an arbitrary piece of it which contains a branch point of
the (n-1)th order of O'where & ™ e=f=d i o by means ef the
function ;-(_._,')--l , onto a different plene A, I.E,, we can
imagine the value of the function {=i+ at point _9_ by
a point PN (theta), whese rectangular coordinates are &y
and which is represenied in this latter plane. So we can consider o
as the image of a point O, This means that we get a connected surface
extended over A as an image of this segment of surface T, And as we
will show very soon, this new surface which has the image of point O°
in point theta does not any branch point,

In exrder o get a grasp of this mental image, we should think ef
a circle sround point O with a radius R oﬁ plane A, We will also draw
a chord parallel to the x axis, where z-z' becomes a real value, Then
the piece of surface T which surrounds the branch point, and which we
have cut out of the area by the circle, will then separate into scate

tered half circles shaped surface segments on both sides of the dia~

meter in g n, if R is kept sufficiently small, We will describe th
- C e ése
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surface segments by ,, q,....4, on theside of the chord where y-y* is#

. .

positive, and those surface segment s on the other side by af,al- .
We will also assume that @y, Ay oo On is the series associated with

s
negative values of z-z' and that af, a1 ... al, is the series associa~
WHICH 1S COANNBCTEN TO 6.y &1 . ... ey

ted with positive valueqz This way, a point that encircles pointO?

rd -
@y, Q1, 8y, 13 .. .. 4,04,

( in the required sense) runs through the series of surfacesfand
succeeds in getting bvack to & through .‘1'1' which is an obvious assuppw

tion, Next, we will introduce polar coordinated for both planes by

‘—;' E oc‘f'., c-= Jew. 1

setting up anxi we willselect that value
of (:_:.)—L_ 0-.':';:‘"for depicting surface segment & whose expression comes
under the assumption of (g, e So 621.;' and OcyTZ

will held fer all points in &y and the images of these points will all
collectively be in plane A, in a sector stretching frem v=10

te 'Y= of a circle dram araound theta with a radious eof R:t- .
Naturally, every point in 8, immediately corresponds to a point in

this sector that is constantly advancing dlong with it, a#d the reverse
also holds, What ® llows then is that the image of surface &y is s
simply cennected surface extended over this secter. In a similar

manner, the image for surface ai if a sector stretching frem i

L3
—
N

\.

iIx
to p-it » the image for surface & is a sector Btretching from
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; and the image for surface a;L is a sector
gtretching from ,,,_'?_"T".l, to y—-2x 1if we select -qp fer every point
on this surface in the series betwenn = und 2x, 2x und 3x....(2n—1)x und 2nx
wvhich is always possible, and which is only possible, in one way,
These sectors also connect up with each other in th;z very same manner
as do surfaces a and a' so that the points adjoining one another in
ene secter correspond to points adjoining ene another en another secter,
Therefore, we can combire these sectors into a connected image of one
of the pieces of surface T that includes point 0%, Obviously, this
image is a surface that is simply extended over plane A,

Avariable magnitude that has a determinate vd ue for every
point O alse has a determinate value for every point theta and the
reverse also holds, because every O corresponds to only one theta,
and everv theta only correspends to one 0., Furthermeore, if this
variable magnitude is a function of 2, thefit is also a function
of t, » for when 5.‘2 is independent eof dz,j‘f‘if, is alse
in ependent of ié o The rewerse also holds, and ®e get from this
that we can apply the theorems from chapter 12 and Z 13 to all

functions w(z), even to the branchpoint 0' if we consid er them te be

functions of (z-z'_)é » This gives us the following theorenm.
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When functien w(2) becomes infinitely small through the finite
convergence of 0 te a branchpoint (n-1)th order of JF O' , then this
infinite magnitude necessarily has the same order with & power of dis-

tance, as that whose exponent is a multiple of 1,. If this exponent %8

finitema

=== B, then this Iﬂ#ﬁﬂﬂ?ﬁﬁﬁtﬁﬂﬂﬂﬂﬁﬁtﬂ?ﬁﬂﬁﬂﬂm FHAgLigh can be

n

changed into g function that is continuous at point 0' through &dding
an expression of the form —sy"
where &5 2,5 +ooor @y gre arbitrarycomplex magnitudes,

This theorem containg a coz:gllary s‘gating that functien w is

continuous at point O' when (z-2')n w becomes infinitely small as

a result of the infinite conPergence of point 0 toeards J* ,
15,

We will now consider a function of %, which has a determinate
value for every point Oona surfgce T that arbitrarily extends over
4, and which is not constant everywhere, Picture it geometricelly te
that is value w = u +vi at point 0 is represented by a point Q on
Plane B, whose rectangular coordinstes arle u + v, We then get the
Zollowings

1, We can consider the totality of point Q as forming a surface

3, in which every point corresponds to a determinate point O that cone
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tinuously keeps advancing in T as the point in S does,

In order to prove thig, it is obviously aonly necessary to prive

that the position ef point Q always ( and of course, generally speaking,

centinuously) changes along wit h the point of pointrg, This is contained
in the theorem:

A function w =« u ¢+ vi of z cannot be constant along a line unleas

"unless it is constant everywhere,

Proof: If w ewere to have a constant value a + bi along a line, then
ﬁp—n
U - & and o

» Which is egual to ==-§? would be ecual tozeroc for

thiB line and f@r 3'!;;«] &(n—a)

T
generally, And then according to chapter 11, I, u-a and v-b too,
(vecause of %;“=-§;-, P L

) would also have to be equal
te o everywhere, which is contrary to our Presuppositions,

II1. As & result of the Precondition we established in section I,

there cannot be 8ny connection between the segments of S without cone

nection ameng the corresponding segments ef T, The rewerse is universal
too, for where connection eccurs in T and w is continuous,

the surface
5 also has a corresponding connection,

If we presuppese this, then S*s boundery corresponds om one hand
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to T's boundary, and en the ether hand to discontinuous positions,

However its inner segments, excluding isolated points, extend smoothly
(schlicht) over B everywhere, i.e., there is neither a fissure in the
segments lying on top of eech other, nor is there a.fold anywhere
either,

Because T is correspondingly connected everywhere, the first cone
dition could only occur if T underwent a fissure which is centrary
1o our assumption, We canlprove the second condition in the same way,

Next of all, we wiii prove that point Qr, wherezé%g? is finite,
cannot lie in a fold en surface p

In reality, what we would do is surround pPoint 0' , which correse
ponds to Q witha piece of surface T* that is of arbitrary form and {ine
determingte dimensions, We would have to assume this Piece's dimensionas
to be 20 small (according to Chapter 3) that the form (Gestalt) of the
correspendin- segmen$ of S will deviate in an arbitrarily small way,

80 that its boundary will exclude a piece thcluding Q' from plane B,

But this is imposgible if Q' lies in a fold on surface S,
w
Se now if we consider ;?jZf’ as a function of z, according te

L. 1t can only ve equal to e in isolated points. Ang because w is coxe

stant in the Points



321’ T that are under consideration, —Zﬂgz"{:‘v— can only become infinjte
in the branch points of this surface., Theréfore, Q.E.D.

III, Surface S therefore is a surface which satisfies the pre-
conditions we established in chapter 5 foi T, and the indeterminate
megnitude 2 has one determinete value for every point Q on this surface,
This one determinzte value continuously changes with the position of

Az

' Q in such a way that W is independent of the change in location,
Therefore, in the sense that was established earlier, what we get
forming is a continuous function of the varialbe complex magnitude w
for the entire magnitudinal fielg (Gebiet) presented by S,

What follows is:
Let 0°' and Q' be two corresponding interior points on surfaces T and
S, and z = 2' and w = w' in those same PI1ELEA surfaces, Then if neither

f

of these points are a dbranch point, —‘LV:—::!;' will converge towards a
z-——-

finite limit, as O infinitely converges on 0', and the image here will
be similar down te the smnallest segments. However, if Q' is a braneh

point ef the (n-1l)th erder, and 0* is a branchpoint of the (m~l)th

order, then foow)® approaches a finite limit as 0 infinitely

X
t—n=

converges on 0°', We can easily get a method for depicting the adjoining
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surface segments from chapter ld.
16.(5)

Pedagogical theorem: Let « und B be two arbitrary
functions of x,y, for which the integral f[@-;—%)'+ (g—; +§f7)'] aT
nas a finite gfffAdf value as it expands through all the segments of
surface which is srbitrarily extended above A, Then when we alter
around continuous functions, or around functions which are enly die=
continuous in iselated points, (both kinds of functions being ;c at
their margin) the integral will alv}ays have & minimum value for one
ef these functions. And if we exclude the discontinuities that eccur
by making changes in isocleaged point.s, then we would only get a minimum
value for one function,

We will define ! as being sn indeterminite, continuous funcw
tien or as & function that is enly discontinuous in a couple ef points,

L=/ '(gé)’+ €5)ar

It will be = ¢ at its margin and the integralftwhich extends over the
entire surface will have a finite value far this functién. Additionsally
we will define o as an indeterminate (value?) of the funciiem ..
gnd we will define ,, as the integral J [@ — 35+ (§§'+§g)’] T

which extends over the entire surface, The totality of the ;-

functions form a cohesive, self-f£gAffglIfAcontained domain in which
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each ofle of these functions continually change into others. How-
ever, thése functions themselves cannot infinitely discontinueously

(chapter 17)
converge on & line, without having L become infinite, This is so

for EveRy A
because when we assume o©=a42 ? s o becomes fAf{ILE/ a finite

value that becomes infinite along with I, and' that continuously
changes with the form (Gestalt) of ‘L sy but that can never
sink below null. Therefore it follows that fl has & minimum for
at least one fomm (Gestalt) of the function w.
In order to prove the second partof our theorem, let 4 be
' -
one of the functions of , which gives {1 a minimum value. Let A,
be a constant magnitude that is indeterminate on the entire
surface, so that “+h  gatisfies the preconditions set up
for function w, Ihen the value of 2 for owu-+ 4i which
Tiaw 8B\, (2w , 2B\
- J[G-2)s G+ g]er
du g\ AN e, 3P\ P4
+2hf[(3;—7;)3;+(3';+ %) a;]”

+ :.'f(%)'-p 3;)’)”- M4 2Nh+ LA
must therefore be greater than M fer every 1 ( according to the

concept of the minimum), as long as we assume A to be sufficiently
small. But this then reouires that everyd #/=0 for otherwise
2Nh+ LKt — Li* (1 4 35) would become negative when is

counterposed to N, irrespective of the signs <—‘§-—A/—- .

Therefore the value of Ll for w=—u+* which is the form thet obe
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viously contains all possible values for w, becomes = M + L,
Consequently, because L is essentially positive, .ﬂ- cannet

have a smaller value for any form (Gestalt) of function. than

Then if there is a minimym value M? of.ﬂ- for another 2 of the
. /
functions , , the same obviously holds for this. We will get /< M
/ / ’
and/‘/</l1, and consequently/v;'/vl o But if we introduce U inte
/
the form ’L(i-l’ then we get the expression/\/,»[_/ for /V’ , as
/ : 7
long as .L describes the value of Z for,?,:,’{ s 8nd the
] V4 '
equation/"f-‘/“/ glves L = ¢, This is only possible when
w_ o _gi o ,
cFr=" - in all surface segments. Therefore, as
long as 2_' is continuocus, this function is necessarily continuous,

And because it is #/ = o at its margin, and it is net discontinuous

only ‘
along a line it can/have a value different from null,at the most, in
some isolated points. So then, two of the functions of o, wWhich

glve L & nminimum value, can only be different from each other
in isolated points., And if we put aside the discontinuities in

Tunction ¢ that crop up tUALALA/ARARLES/TH/4FL by making chenges

in iselated points, then this function is totally determinate,

17.
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We will now supply the proof that A cannot infinitely converge on a MER=

LOCATED OV A LINE
il B e without prejudicing f¥¢ L's

1

e

@& discontinuocus

4
infiniteness. I.e., if function 2 is subjected to the condition of

agreeing with ”_‘ outside of a surface segment T' that includes the
line of discontinuities, then we cen always assume T* to be so small
that T must become larger than an arbitrarily given magnitude C.

Assuming s and p as having their usual relation in relation teo
the line of discontinuity, we will define « as the curvature éf an
indeterminate s, a curvature which is convex on the side of the
positive p, and which we will consider as pesitive, We will define
?, @s tne valwe of p at the boundary of T' on the positive side, and
on the negative side by Poo We will define the corresponding values
of '7 as ﬁ_An. and % o So if we now consider a centinuously curved
segnent of this line, and if the segment of T* that is contained be=
tween the normals in the endpeoints does net reach to the middle
point of the curvature, then this segment ef T contribufes the
following expression to L2 ‘fdi ’:dp(l — xp) [(2;,)’+ (%")'(T:l;,‘)'i]; :
however, we find the smallest value of the expression

- j(-g—i;)'(lw—*!’)dl’. at the fixed boundary values , , and -,

of ‘4 +to be eougl to,according tow ell known rules,f‘a _-_-r_Tl___(anT-*_r-ll'*( )
og{l—np) — log (l—=xp}’



4

Therefore, wiZ/ we will have to necesssarily assume that every

i —_p ) inds .
contritution, as well as A inside T', te be >/l tmt—rsl

V4

Function --yIWO'uld be continuous for p=e if the greatest value which
could contain (y =) fir x,>p >0 und x,<p, <0 Were te become infinitely
small through =—=, . Therefore we can assume fhat for every
‘Wﬁiﬁﬂ/ value of 8 there exists a finite magnitude m so that no
matter how smallm—Mis assumed to be, m will always be contained
-inside the boundary values of P and Po, which are expressed by x,>p >0
% < p, <0 ;
and (in which their gouality is mutuallu ex2luded), and fer
which (1 ~rf>m 3 Furthez:m;:re, if we arbitrarily sssume a form
(Gestalt) for T' in amccordance with the earlier limitations, we will
give Py and ) ) the determinste values of Pl and 1’2 and define a as
the value of the integral fqm_l——-w-;—;.;—‘_dm

which extends through the segment of the line of discontinuities that

we are considering. Then we can obviously make ‘/ m,_‘:‘p'_)f’;o';‘('l__m>(,

to the extant that we so assume »y and P, for every value of 8 s0

a

that the inegqualities g<:_(1:gj’ p’>1—u:.p,)_'3 und (3, — 7o) > m
will suffice, But this leads to the consequence that we assume that the

segnent of L that comes from the piece of T" that we are considering, and

and therefore even to a greater degree L itself, are larger than €, just
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as we would assume LfAL£/F// +to be inside T. Q.E.D. (6)

18,

According to chapter 16, the function u which we established
there is =e, as are any of the functions ¥~—f[(&- ;E -+ G+ 8 & ) 5|z,
which extend throughout all of surface T, We will now draw some
further conclusions from this equation,

Let us take & piece T', that includes the discontinuous points, &, A1
and cut it out from surfaceY, Wec an then find segment N, which i-s
based on the remianing pieces T*'', with the aid of chepters 7 and 8,
if we replac G:"%)‘l for X and (g;"+§§)1for X,

.._Ja z,-i-;-—dT J(;“ +38) aus.
As a consequence of the boundary conditions that have allready been
imposed on function A » the segment of ./.(«%"'%g)‘d“
relating yo the joint boundary piece that T'' has with T is eocual to

®. We can then consider ¥ to be composed @ the integral -_J;(g-g-,‘ +§'ﬁ) dT

Sl -0 2+ G+ BB ar +f Er4 3 2as

relative to T”; and of A relative to T',

So now it is obvious, that if ax.+—1 were to be different from

2ERe
ﬂin any s egment of surface T, N would likewise have a value different

Z ERO
from ‘aso long as /,1, » Which is free, JFAI£¥/is equal to §Pinside of

', and so long as we choose Q_ inside T*'' 50 that A(g-;-{- ) would



e

have the same sign eﬁerywhere. However, if 5;54—3-:,‘ are
# =0 in all segments of T, then the component segment N which is
based on T'' vanishes for every Q, « The 1;esu1t of the conditien
N= go will then be that the component segments relating to dis-
continuffi£4/eus points =o,

Concerning functions 3&—%523+-§'{ .

therefore, whet we get when we have the first one = X and the

latter = X, iF we jus€ do not want to speak generally, is the

L]

eguation, R f +%’-":=n, 5(}1}

W

to the extent that t};is equation really has a determinate value,
JEE+rE o,

So (according to chapter 9,V) if surface T has the property
of multiple connection, we divide it by cuts into a gimply cen-
nected T#. As a result, the integral _J?(%%.;.%;l).u

o
has the same value for every line in T#*s that goes from O, te
0. And when we consider O, to be fixed, this integral will then
also form a function for x and y that undergoes a continuous
change gnd a change that is equal on both sides of a cut in T#.
When we add this function v to # we get a function W= A+
(ad du 2 o, .

whose differential quotient is jr=—35; wd %331

Therefore we have the followings
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Pedagogical theorem: Assume that a complex function

is given a connected surface T which in turnis divided by cuts
into a simply £EAAALEL connected surface T#. In terms of this
functien J'L(g__:_%)’ + @;_ " %9'] P extends throughout the
entire surface an? has a finite value, so that ;t can always be
| changed and can only be changed into a function f£fLFRLY/ ef
g through the addition of a function which satisfies the fellowing
conditionss
1) is =e at the margin, or is only different frem it in iso-~ ..‘
lated points, while v is arbitrarily given for a point,
2) the changes made by in T, and changes made by v in T#, only
eccur in isolated points and are so discontinuous that
s S 169+ @) ar we 16D+ &) ar remain finite
as théy ex;end through the entire surface, amd the latter expression
remains equal on both sides along the cut,
These conditions' adequacy in determining s ++i stems from
having # , through which we determined v £f up to an additive
0

constant, always furnish a minimum for the integralfat the same

time.. This is so because given ¥ = &€t V » N will obviously be

=g for every A # @& property which can only belong to one function,



a8ccording to chapter 16.
19,

The Principles which are the basis for the Pedagogical theorenm
at the conclusion of the previous chapter open up the path for
investigating détéfﬂiﬂéﬁé//iﬁé/ thedeterminasgte
functions of a variable complex magnitude (independent of an ex-
pression for the same,)

A ouick review of the range of the conditions that are necese
sary for the determination of such ££ a function inside a given
numerical domai#-(Groessengebiets) will serve us as an orientatiem
to this field,

First of all, we will bause at a specific case: If the surface
which is extended over A (which is how we will represent this
numerical domain) is a simply connected pzdyid/ surface, then the
function *Z5+vi  of z will be determined according to the
following conditions:

1) a value ig given for 4¢  in all the boundary points, end when
this value undergoes an infinitely small change of position, it

changes by an infinitely smali Ragnitude of the same order,

Otherwise, the value will change arbitrarily . #
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# In themselves, the changes in this value are only subject to
the limitation that they are not discontinuous along a par t of
the boundary. We have only imposed the additional limitation in

order to avoid formal difficulties which are unnecessary here.

2) the value for v et eny point is Afféd/arbitrarily{ given,
3) the function should be finite amd continuous at all points.
The function is totally determined by these conditions.

In red ity, this does follew from the pedagogical theorem ixﬁ

4

the previous chapter, if we so define .4 g 80 that'a at the
margin is ecual to the given value, and if the charge in *+ &
in infinitely small and of the same order for every infinitely
small change of location in the entire surface, It is always
possible for us to define “1‘/91' this way,

Generally speaking, therefore, we can have u at the margin be
as a8 totally arbitrary function of s, and we can also define v
anywhere through this. We can assume thereverse too, for if‘ v ie
arbitrar§ly given for all boundary points, then the value for u
follows from this. So the full range for the choice of values

for a w at the margin encompasses s gALLE1A/ 41 one-dimensional

manifold for every boundary point, In order to tatally d efine this
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manifold, what we meed for every boundary point is an equation for

which SHELF/BEIAELLE/bLARE/LE/AA 1% 18 not essential that every one

of the equations is solely based on the value of one term in ons
boundary point, Our definition can also turn ocut in such a way, 80
that what we get far every boundary § point if an squation containing
both terms that cpntWﬂloualy changes its form (Form) as the posik-
tion of 'ﬂali;a boﬁm‘aryj point changes, Or, whet c¢an happen simultan=-
sously to several segments of the boundary 1s that every point de-
fined &s an n-f!. point of this ae@ent gots matched to one point in
usch & way tﬁat that for every n amount of such points, we colles~
tive;y get an n .amount of equations that contimiously change with
theirclocations., Bowever, these conditions, whoe totality conati=-
tutes a continuous manifold, and which are expreassed by comparisons
(oqﬁatiom) bctween arbitrary functions, generally speaking, still
require eithex; limitation of amplication by means of foslated con~
ditional equations = equations for arbitrary constansts - in order to
get a reliable and adequate definition for a function that is con-
tinuous everywhere inside a numerical domaln, These conditions re-
quire this, that is, to the extent thai: the accuracy we used in our

evaluations does not reach up to this level,

Oour observations will not have to under go any easential modifi=-
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cations of the situation where magnitude g's domain of variability is

reprasaﬁted by a nmultiply connected plans because the application of
the theorem in chapter 18 creates a function constituted as before,
excepting the chan es that occur in oversteyping the cuta = changes,
which can be made =mo if the boundary conditions contain an ammount of
giaposable conastatits that are equal Vto the number of cuts,

Tae situation In the interiop, where we have relinquished all
claims for continuity along a line, organizes itself like the previous
situation if we consider this lins to be a out on the surface,

And finally, if we allow continuity to be violated at '.;n isola=-
ted point, then, according to chapter 12, this {8 how a function be~
cames infinite. So, by retaining the specisl preaconditions that we made
in the first case ror this point, function x can be arbitrarily given
after its concurring function becomes contimuocus, However, as a result
of this, function z becomes completely defined, For if we aaa{me the
magnitude which is in an arbitrarly small circle druwwn nromq the dis-
continuous point to be equal to the fiven function, and, moreover, to
also conform to the earlier formulas, then the integral _f (@5-—;—:—)'-;- (e +28)")ar

#4441 Ad/ =o when 1t 1s extended over thia circle, and equals a finite

magnitude when 1t 1s extended over the remaining segment, And so we

can apply the theorem from the previous chapter, through which we get



a function with the desireq Properties. From this we can geénerally de=-
rive, with the aid of the theorems in chapter 13, that when a function
can become infinitely large to the nth order in a discontimious point,
then a number of 2n constants become available,

According to chapter 15, let us assume a function w of & variable

be the conditions fop the position of Sts boundary, ang naturally, they

give a conditional équation for every boundary point, 5o ir eévery one

forms the Eeometrical location for each boundary point, If we then
Jointly subject two boundary boints that keep in step with each other

continuously to tWo conditional equations, what we then get igs such a



dependency (slope)} between the two boundary Begments ﬁhat when we ape
bitrarily assume g position for one point, we can derive the position
of the other point from it, Tn like manner, we can also get something
of geometrical importance fiéﬁ/%ﬁ}/dﬁﬂéf/ out of the other forms of
the conditional equations, hut we do not want to pufsue this further
here,
20,
The orighh and the immediate purpose fop the 1ntroﬁ£ﬁzﬁﬁyyduction

of complex number into mathematics is the theory of creating Simpleri

# Here we will consider Addition, subtraction, Multiplication and
Division as elementary Cperation, and we will consider a dependency
law (A4Y siope law) to be all the mope simpler - the fewer ape the
elementary operations that determine the dependency. In reality, al1
of the functions that have been used up to now in this analysis can be

defined by a finite number of these Operations,
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which 1s especially indirect (versteckt) and lasting. Of course, up until
now the situation in which this occurs have encompassed a small damain ~
we can almost always totally trace these situations back to those very
laws covering the depnedency between two variable magnitudes, wherse one

function 4s elther an algebraicf function of the other ££ or 1s that

I.E., where en algebraic equation occurs between both,

kind of function whose differential quotient is an algebraio function.
7---But in almost every step that we have taken hers, we have not just
aimply given a simpler, mors ZAALLYYAAL consistent Gestalt to our re-
. without any help from complex megnitudes. Our steps have alse
sults
pipneered the way for new discoveries, and the sccount ef our exeminse
tien of nlgcbfaio function, ocircular - er exponential function, ellip~
tioal and Abelian functions furnishes the svidenos for this,

We will new briefly indicate what the theory of these functiionas
hna‘gained through our axaminatieng,

Therprevioua methods that were used te deal with these functions
always had, as the basis of their detinition’ an expression of the
function through which the function's value_would be given for every

value in the argument, Our examination ﬂap thln that as e result of

the zenaral charaoter of a function ef a variable complex magnitude,



what we get in a definition of this kind is that any one segment of
the pieces making up the definition TEEYIEE 1s a direct consequence of
the remaining segments, and of course, we can trace the range of pleces
making up the definition back to those pieces that are mecessary fer
the definition, which essentially simplies our treatment of the defini~
tion, For example, in order to prove that two expressions of the same
function a re equal, we would have had to pPreviously show that bouk
agree for every value of the complex magnitude, But now, the evidence
of their agreement in a considerably smaller range is sufficient,

A theory of these functions that 13 based on' the foundati ons that
we have supplied here would define the function's configuration (Gew
Stalting) (f.e., its value for every value in the argument), indepen~
éently of the method of determining this through numerical operations,
(Goressen @perationed) For in this new definition, we would enly add
the features that are necessary to d efine the i’unctilon to the geners}
conception of & function of a variable complex magnitude, And only then
would we add these features to the various expressions which the
function is capable of undergoing. We can then eéxpress the commen
characteristic of a species of function, which could be expressed in

& similar manner by numerical operations, in the férm of the boundarye

and discontinuity conditions that are imposed on the functiong,



Assume, for example, that magnitude z's domain of variability extends
e€ither simply, or mhltiply over all of infinite plane A, and that ine
side fhis same plane our function is discontinuous only in isolated
Points. We will also only tolerate a function that is becoming ine-
finite and whose order is finite, (As & result, we will cansider this
magnitude itslef to be an infinite magnitude of the first erder for
an infinite z: but we will consider _;;:;;; to be an infinite magni-
tude of the first order for every finite value of z%;, Se, the functien
is necessarily algebraic, and conversely, every algebraic function.
fulfills this condition.

In our paper, we have abstained for now from realizing this theory,
because as we remarked, this realization would be characterized by
bringing simple dependency (slope) laws that are conditional on NUBErs
ical operations out into the light of day. We h ave not dene this se
far because we have ruled out considering the expression of such a
function for the present,

And for these very same reason, we also did not concern ourselves
1ere with our theorem's usefulness as the foundation of a generagl
theory of these dependency (slope) laws, What we would need for this is
yroef that the com ept of a function of varisble complex magnitude,

thich is our basis here, is 4n compl ete agreemtn with a dependencv#



(slope) that is expressible by a numerical operation., #9

# Thie includes every one of the dependencies that can be expressed
by & finite of infinite number of the four simples methods of calcue~
lationy addition and subtraction, multiplication and divieion. In

terms of magnitudinal operationa( fA/£AL£A4L/£f Groessenoperationen,

usually trsns, previously as numerical operations),in contrast te
counting eperations (Zahlenoperationen), their expression themselves
should indicate those methods of calculation which do net bring these

(7)

magnitudes® commensurability into ocuestion,

2l. "

Nevertheless, a detailed example of its; application can be eof use
in {llustrating our general theory.

The application of our theory which was described in the previeus
chapter is only a special application, even though it was intended te
be our first example, Assume a dependency is conditioned by a finite
number of the numerical apefati ons that we consil ered to be elemene
tary operatons in the previous chapter, Thenits function Eontal ns
only a finite number of parameters that succeed in having no arbitrary
determinate conditions at all occur under them along a line st any

point, This is so regardless what the form 113 of the system of mutually

independent boundary~ and discontimuity conditions/ th:t are adequate



%0 define the function; Therefore is seems better sutted for our
Present purposeé if we do not select an example that comes from that
situation, but if we instead take an examdle where the function ef
the complex variable is dependent on an arbitrary function,

In order to make an assesament, and to get a more comfortable
framework we will give our example the geometrical form that we used
&t the end of chapter 19, What we will then appear to have is an ine
vestigation ef the possibility ef producing an analogous image, conw=
nected down to its smellest segments, of a given surface, The image's
Gestalt is given in the form that was expressed above, where there is
locational curve for every boundary point in the image, and where
the lecational curve is given for all these boundary peoints, with the
exception of the boundary and branch point as givenin chapter 5, We
will limit ourselves to solving this problem for the situatiens where
every point in one surface will enly correspond to one point in the
ether surface, and where the surfaces are simply c onnected, This
situation is contained in the following pedagogical theorem,

Two simply connected surfaces can alwyss relate to each other
in such a manner that every point on one surface correspénds to the
point on the other surface that is steadily progressing with it, and

30 that their smallest corresponding segments are similar. Naturally,



we can arbitrarily give ocorresponding points to the interier points

in ene surface, and to the boundarypoints en ancther, but this is what
determines the relatienship for all points,

If twe surfaces T and R are so reBated to a third surface 5 that
their smallest cerresponding segments are similar te 8's, then & Tre-
latien develeps sut ef this between surface T and R whichis ebviously
the same as the first relatienship, We can trace eur task, which cen
sists of relating twe arbitrary surfaces to each ether so that they are
saimilar in their smallest segments, back te protraying every arbitrary
surface threugh anether surface which we define as mimilar dewn to its
smallest segments. According %o this, when we draw a circle K with
the Addfdké radius J1 around the point in plane B where wes, all we
have te preve in erder to follew eur pedagogical theerea is that:
we can AXfffé/pewtray sm arbitrarily, simply oennscted surface T
that cevers A, as Jgﬁtﬁg?nmrfmo. aﬁd one that is similar dewn
te its smallest segnent, by cirole K in such a msnner, and enly in
such s manner, that an arbitrarily given interier point 0, ceTTES=
pends te the oricle's middle peint, and an arbditrarily given beundary
B##A#/ point O en surface T cerresponds to an arbitrarily given poimt

on the oircle's periphery/

We will describe the meanings defined for s, Q for point Op ang
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0* by corresconding indices, and we can amcribe the middle point of

&n arbitrary circle @, which does not reach up to T's boundary, and
which does not have any branchpoints, as being around 0. in T, With
the introductien of polg$ coordinates to the extent that we have

1= =rer then the function iocg(s—a,) -_'iogr-f-?.; .
As a result of tihs, all the real values in the entire circle change
continuously, except for point 00, whose value becomes infinite, But
whereever we select the smallest possible value for p smong all
Possible values, the imaghkary wvalue has e value on the one side, and'
the value of 2 7f en the other side along the radius where Z‘-—Z.
agsumes real positive values, In all other points, however, the imae
ginery numbers change continuously. Obviously, this radious can be re~
pPlaced by a totelly arbitrary line L drawn from the middle point te
the PELLVE L/ periphery, so that function log(s — 2 undergoes a sudden
fimunition of about )_‘ﬁ’ A when point O cresses over from the negative
side of this line (f,e., where p becomes nagative according tg chapter
8) to the positiwe side. Elsewhere, however, the function XtHESN
continuously changes with the pesition O has in dircle ¢ , If we
also assume that in circle e complex function o4.g: OF %« == log (£ — 4,
except when we arbitrarily expand 1 up to the margin_,. then the

function



" 8g P s e e :
1) will become totally imaginery at the margin of T, and on 6 =log(s — z,),

's periphery: m-
2) will change by approximately ,"T'f':’in crossing over from the negative
to the positive side of L, and etherwise, it will change by an infinitely
small magnitude of the same order with every small change in location,

all of which becomes increasingly more possible, Therefore, integral

* p FIAY -3_2 1 ;
I (@'x"ﬁ)"'()y +§9) ¢ has a value of null when it expands
aéross@ ’ and when it extends across the remaining segments i€ has

& finite value, Therefore, we can change . «+8; into a funcgion
f=mtn of z through the é.ddition of a constant function ef
Xoy which is centinuously determinate with the exception oef a totally
imaginery constant remainder, and which is totally imaginary en the
margin, The reals egment m of this function will be w=e on the margin,
will be ¢ = -~ at point 9_0 » and will continuously change in all the
rest of T, Therefore, for every valﬁe gt a of m that lies between O
and — L2 2T, disintegrates as ther esult of a line where =g, disin~
tegrates into segments where m is smaller than a end where O o is cone
tained on the inside, and disintegrates into segments on one side and

the other side where /n "> and where these segments' boundaryf# are

partially formed by T*s mergin, ané partially through lines where m

= 8, As a result of this disintesration.
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elther the order of surface T's oonnection does not ehange,I or it

is reduced.- And so; because this order 1s equal to -1, tl® surface
disintegrates, FF/ff/ into two pleces, or into more than two pleoes;
But this latter situetion i1s impossible becsuse them m would have |
to be finite and continuous everywhere in at leaét one of these
pleces, and oonstant in all the segments of the boundary, As a resulf}
either there would have to ons constant value in each surfsce seg=-
ment, or therse would have to be a minimum or & maximum value any-
where « in a point or along a 1ine, which is contrary tp article
11; III, So then tﬁe points where m i constant £>ym s.tmple; sslf
encircling lines everyvhere, lines which bound e rece inoluding

0 g R will necessarily decrease goling towards thae interior,

which results in n increesing dontinuously, as lonc as it is eon=
tinuvous in a positive mge; ( where 2 increases according to
chapter 8), And if once again we disregrad multipifes of ;‘H"

then every value between o and A1 vecomes equal because

nonly undergnes a aulck ohenge of about — .\ Ir #
n&%ﬁe—ﬁﬁmfrm & point lying in the interior to one

1lying outside, then 1t must €0 one more time from the insids to

PR
Ry

the outside then it goes from the outside to the insgde, ir ¢

erosses the boundary several times, Therefore, the sum of the

anAfdan sahancan v w do & nmmad +leva wnmcas wldTY Aa%awrnrvres Ye -/22 ]'



in oroasing over from the negative side of lime L to its positive
aide; If we then han “=C  them €™ apa n will becoms the polar
eonrdinates of point Q in welation to the middle point of cirloe x;
The totality of point Q will then obviously form a surface s that
extends simply over K overywheref point Q05 1tself will then be at
the middle point of the cirole, and point Q' ocan be backed ints an
arbitrar}ly given point if/#ﬂ/dlﬁﬂ;’) on the periphery with the

help of the aonstants that are still aveilable in n, Q.E,D,

.
4

For the case where pnint 95 18 & draneh point of the (n-1)
order, and if we replace ,&7(2—29) with  lsE—%) s then we
will using very similar conolusions to reach the goal whose further

explication we ean easily £111 put from chapter 4.
22,
¥e will not oompletely ocarry out the investigatiion fA/£Y4/ or

the general cagse in the last chaptsr, whare ons point in one surfase
8hould oorrespond to several points in other surfaces, and whars we
do not make the prerequisite that these pints just have simpls con-
nsotions; #e will not carry this out oompletely because our entire
Investigation has had to lead to e géneral Gestalt, 1f we eomprehend

it from a geometrical viewpoint, For this reason, it was rot essentid
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thet we limited ourselves to level, smooth (schilicht) surfaces

with the exceptién of igolated points; rather, our task has been tp

give it very similar treatment, We will content ourselves hers by
referring to two Gaussian treatises which are cited in chapter 3 ang

Wiidd/ the general inquiry about Surfaces in chapter 1%

r OOTNOTES
#This overview is almost complsetely based on rdeman

1. A variable complex magnitude wexeyi ﬁgﬁﬁg}ﬂggdimg/ﬁ/fﬂﬂﬁﬁdﬁ/

is called a function of another variable magni € z=Xx+yi, if the "
function sochanges thet dw is independent of dz. This definition is
based on the definition dz that this always occurs when the slope
(dependency) of magnitude w(z) is given by an analytic expression,

2. roints 0 ang Q on plenes A ang B Tepresent the values of vari-

3¢ if the dependency ig or such a king (chapter 1) gp that 4dw ig
dz

independent of dz, then the original ang its image are similar down

to their smallest segments,

4. The condition thet gw is independent of 4g is identical with the
dz

v 2 3 . “ePr_o Xz e -
Tollowing ‘T 7;’;3,—“--;5- * rfrom it we get g;+%1‘°' Izt o

5. ﬂf/#lll/snbﬁzfﬁﬂﬁﬂ/ ¥or the location op paintlg » W8 will replace



|
!

plane A with a bounded surface T extended sver plane A, Rraneh
points of this surface.

6., On the ooshesion (connectedness) of a plane

f(L+T)dT |
7« The integral which extends across all of surface T, is

—S (X cont + Y conp)as
equnl to - throughout ita entire baundary when X and Y are

arbitrary, oontinuous functions {n all points om 1'.;41. 2 awd oFs

8¢ The intmwduction of coordinates s and p of point O 1in yegerd ¢o
an eybitrary lime., We will establishe the mutusl dependency (mlope)

du
of the sizns for d4s and 4p in such a way thet '%"2‘?

9. Application of the theorem in ehapter ¥, if 7x+3; ~°

in all surface segments,

J_.o; These are the conditions, under whioh a function u, that 48 in-
side of a surface T whish simply covers A, and thet 1is generally

- satisfying the equation g‘z,ﬂ_m,._.o is universally finite and con~

tinuous along with all of its differential quot!.ents;

11; The oharacteristios of mh a funotion,

12; The oonditions under whish & funotion w (2), that is inside of
® surfece T whioh is simply eonneoted end that simply oovers 4, 1s
universally finite and eontinuous togaether with its differantial

equations,

13, The discontinuities of such a function in an interior point,
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14, The extension of the theorems in chapters 12 ang 13 to the points

in the interior of an arbitrary, level surface,
15, ihe general characteristics of the image of a surface &y which
extends in plane A, onto a surface S which extends in plane B, We can

geometrically represent the value of a function w(z) ‘through thig,

1ls, theintegral ./.[thgiﬂ)‘+(g_;+;£).]“7' which extends throughout

all of plane . always has aminimum value for one function, 1his ig
caused by the changes in . around continuous functions, or
around functions which s re only discontinusus in a couple of points,‘
with these functions being equal to o at the margin, .f we exclude the
discontinuities in siolated points through midofication, then we will.
get a minimum value for only one function,

17, This is the Toundati on, using the boundary method, of a theorem that
was presuppossed in the previous chapter,

18, A ssume theat a function «+ g 127\/-1’:7" is

given in a level Surface T, T being arbitrarily connec ted and broken

down into2simply conmetted i* through cuts. then the function ig
finite, and hag j[@;—%ﬁ)'+ G§+§§'] ar, extending
throughout the whole plane, Then W& can tumm thig function intg a
function of 3 only and always thrdugh bne msthod, through adding g

Tunction of &+ +ivem,, » Which is conditioned in the following
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ways, 1.) u equals o at the mergin, and v s given for one point,
i . ! il .
Be ) The changes n undergoes are in T, and the chnnges ¥ undergopes are

‘.

in T*, are only in siolated polnts, and are only so d!ucontinuous that

J.

f[@i) 75 |47 umt_j [G)+ &) &) Jar remain finite

\.
e .u

/
throughout the whole surraoo, and the latter dtpronion rémins equal

on both sides of the out, :

19, A rough caluclation about the oconditions that aro nsosssary and
- C
!

sufficlent to define a function of a complex argument inside a given

Bumerioal domain, '

ao; The previous gethod of definipz a function by numerical operations
eontains superrlusus elementa; As a result of the obsepvations that we
have oarried out here, we can t rase the rangs of the parts that define
& function dback to the necessary standard,

21, Two simply oonnected surfaces can relate to each other so contin-
uwously that every point in one surface oorrespondsto the point that &s
oeontinuously progressing with 1t in the other surface, in Qddltitm to

their deing similar down to thelr smallest parts, Naturally, any one

interior point and any one boundary point can be arbitrarily given a
eorresponding point. Tis 18 what defines tie relatéon for all points,

22, Final Remarks,



NOTES '.
1. ( for page 1) at this point in Rieman's papers we Tind the

following :équisito t;;rrollary:

'ﬁhut we mean by the exprassionl-: magnitude w oontinupualy sharg es
elong with = betwaen the boundaries of x equals a and = equais b s that:
Every infinitely small t.:hange in z oorresponds to an infinitely amall
ochange in w in this intervall, Or; @3 expressed in a more comprehensible
manner: magnitude -'q increases in such a way for an arbitrarily given
magnitude é 80 that inside of an interval for » which is smaller Fhat

; the difference between two values of w is never greater thg;: &
; According to this; & funotion's continuity carries along with it
the faot that the funotion is permanently finite, even when this has not
been partiscularly broughf to our attention,”

8; ( for page 7 ) If we are not oonsidering a mistake here, then we are
using the expreasion; “from the Jff/ left to tis right® in a manney ﬁhat
is ocontrary to the way 1t is usually usedq, n:ei-erora, the sense of tis
snoirddement iz to be eﬁluatad for the standpoint of an obs;rver placed
)M the middle point who is Tollowing the enciroling point with his yigd/ o
ywn enn.- |

3.- { for page )0 ) The i}rbilom example will serve to expla in this

i

somewhat obsourely éxpre:ssed point:
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Ia the Lllustration 62 the left, T is a tkreefold connected plane,

(ab) is the first eut q, aad (ed) is the sesond ekt
Qe And we should also distiaguish three distinet

di fferences in the eonstant value for the fuaction

n

Z-J("é’f" *31’)“'5 . These three different sm=

‘ctant values are: A for liae (ae); B, for lime ( eb); and O for line {ad),
If wo go through (ed) rirat; then ia tis ocase O oan have any value, Next,
‘u' we go through (be) then in this oase, B oan have a differeat arbitraxy
value. But tnﬁ totally_ defines the differense in eonstant value for A o
fuaotioa 2 orl for (ae), namely (if the sigas are appropriately der.ued)

e In a similar manner, we ocan generally oorolude that wheneve
we met a out that has slready been goae thArough as we go baock through a
sustem of eusa; thea the ohange that the fumotion's difference Y§/gfifrds
ia §ontut. value undergoes as a result of this 1s totally determimed.
Le(For pagedl) 'Tae forsmula J.S—;“” will hold, if we assume that
u* equals 1 in the iantegral J‘(“;—;-'%ﬁ)d . e As 2 resuit; this inte
gral, whiok utendy over the boundary of a surfaee pieese beoause u fulfilk

the hypothesis in ohapter 16, vanishes,

5 {¥yor page_?-]‘l Riemann latter deseribed the method of proof he used ia

omapter 16 (Theory of Abelian Functions, Treatise VI of this editioa,
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Nr. 3 and Nr. L, ochapter 1) as Direhletts Riinoiple. (based oa the FYrd

Direhletian leotures,) Gauss too used similar esomolusioas { Geaeral
Pedagogloal theorems relatiag to the ianverse relationghip of the Square
of the Distanee and its effeots oa Forces of Attrnouog andvnepulsiél.
Works, Volume V) The validity of thss method of drawing a oonclusioa hes
beea attacked in & more receat pariod; and the evidenee gf for the existe
ease of a mimimun value for iategral fl has beea partioularly aad juste
ifiably eoatested., But the theorea 1t|e1r; through whiokh this oomclusioa
should be proves, and whioh gives Riemann's work in fumotioa cnéori its
oharasteristieally simple and general charaoter, has had its ocorreotness
proven oa & different basis through aew research. ( Compare this espeeled
to the strikiag work by H.A. sohwarz; Moathly Reports of the Berlia
Academy, Ootober 1870; Jouraal for Mathematies Volume 71..; also ocolleoted
treatises, aaé C. Hemnn; In;‘estlgatiou of the logarithmie and Newtoaia
potutial; naipzig; 1877} Leotures oa Riemana’s Theory of the Abelian
I.te;nl; 2ad Mition; I.eipzis; 188#.) |

$. { Yor page i/ ) The following aotes are almost literally takea from th

outlises for eshapter 17 that wer found in Riemann's literary estate, They

serve partially as aa explaaatioa of the investigatioa, and partially am

supplemeat,
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We oan only take a value that ia uaiversally equalt to Yo from the

values PJ. and 22 ir '!" has a rinite width, ( tRrougk which our proof
beoomes spplioable for the case where discoantiauity eaters aloag a part f
of the boundary/Y/df/ or where the Alsooatinnity would aooﬁr by modifyisg
7 aloag a lime ia the interior, m therefore, is mot aotually the gfyd
smallest value of (7; = '):.l);l thkat is plaeed in the given interval betweam
Py aad Pos aad 80 our proef iz also applisadble for the ocase wheroruoun
have an infinite amouat of saximies and miaisa, Yor cnnple; y would have
the value 5/#;4 ia the viciaity of the line of dissoatiauity,

Ia a siallar nnur; w8 oxi ahow that L expanis beyoad all boumdaries
whea 1tiolr draws iafisitely mear a fumctioa ) . This funotioa thes
becomes so diseontiaucus at pokat 0' that 4inm the aesne;t whose olreun
ferense .?;' is drswa aroumd O' with the radious ° , v% Yésdnl
either approaches a finite bonndar,r; or beocomes iafinite givem aa infiaith
small .,

In this oue; we oan assume a value R for q 80 that uo;)rdm to the
same vuue; - v;]!t(gﬁ'+ @,L,)'J de . does amot beeome equal to o.. It we
desoribe the smallest value of this magnitude 1a this faterval by a; 44

thea the aoatribution to L that a riag eontaimed betwoen ¥/d/Adupys/H/k

. oquals r asd , equals R makes is: where r i3 less thaa R):
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and therefore 1- larger thas O 1s we ussume that/f = K¢ 2 >C
80 1f we seleot a eircle, where R im less ﬁnr. /(’( as the bouadary for
2, thea the seotions of L that oome from the rest of '1"; and bhérerore
L itaself, are greater than C, Just like we would hﬁne to assume that ¥
x 18 too, inside of the oirele. ( Naturally, this researoh is first ofA
all based on a point which is meither a bramch poiat nor a bouadary poist,
but whioh does umdergo an esseatial change oaly for a boundary poiat Wid
where the surface has a peak in Lt; 1.0.; its boundary u;nl a returas JELf
poiat. We oan alos base our determiaation of the deg‘ree of diuontj_.n-
uity here, whioh '1 .un not esbablllh; on these bery same primoiples,
and 30 we will oontaat ourselve with just imdiocating this ease,)

What we also got is that: whea the surface segmeat where Q and 7
are differeat becomes iafimitely small, T* itslef is a lime of diseon~
tisulty,. Aad; ‘wherever this is a discoatimuous poiat ia the remalaing
segmeat of 'r; this also makes an infinite soatributioa to Le Therefora;
our assertiom is justified Lf the discoatimaiyt reasches the aekreo ¥
we hypothesized about hers. To thls e;bent; we are sabisfied with our

assertion's validity, but in reality it is inoorreat for the more moderd

disooatisuities, For example, if ¥, which is the distance of poiat O
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from the diseontiauous JYpy/ polnb; equals s €nd whea g is smaller

than%? Therefore, we will apply the following restriotion to the first
scotion of the theorem ln okspter 16: Given thaty= a 7+ A , iategral N

¥fg/ elther assumes s mimimum value for ose of the fumctlioa of {2,
or it assumes the value of //L , while .n- npproaoiea a spallest
ﬁoundnry value; and only approackes diseoatiamuity ia isolated poiata, As
a result of thil; the powers ‘%‘2}5)—% do iot. reach unity whea they beeome
intinito.

ghere will NfYd/¥# be a diseomtimulty eatering iato fuastioa '; which
onn‘be eradissted by modifyiag the value for a the polnt; wheaever a fold
appears iz the surface. This folkd would ¥fY#/¥¢ ve an 1solated bouadary
peiat, where Q, would Rave Lo zZERD o
7. (¥or page5¥) ore resent iavestigations have showa that the power of
ualytioﬁ expressioss sven goes beyoad what is has the appearanee of Kol
having in this diseussioa by Riemann, It was Seidel wko first gave some
rennrﬁnble exsmples for this (Crelle‘s Journll;‘VOI. 73; B8+279). We
establisked that other amalytieal expressioas that are depeandeat oz =
aad that are equal to sa arbitrary fusotiom of Z iaside a tirolo; aad

waleh are equal to e outside of the olrels, (or whioch are ariversally

equal to o exoept on the eirocle's periphery,) are equal to 1l oa the



on the circle'speriphery. And if we admit determinate intégrals,
-then we can go even further and, for example,,present x or y or
L}
-‘/xa_,./y-‘l ag a function of Z = x+ ‘y” .
Weierstrass has shown ( in Theorei of Functions, Monthly

Report of the Berlin Academy, August 1880 and also in the collec=
tion of treatises from Function Theorie, Berlin 1886) how we cen
£ind infinite series, whose members are rational functions of 2

_ different ’
which present/arbitrary functions of z in an ard trary number of"

the different domains ef variable Z.



