The Real Calculus vs.
What You Learned

HOW
LEIBNIZ’S
ORIGINAL
CALCULUS
HAS BEEN
SUBVERTED

by Ernest Schapiro

A false version of the calculus,
based on the Cauchy limit
theorem, is now taught in

the schools. To revive
inventiveness in the physical
sciences, students must learn
the real creative breakthrough
embodied in Leibniz’s
discovery of the calculus.
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A student in calculus class, But what is she learning/——a set of rules whose
discovery has been mystified by the Limit Theorem of Cauchy, or the actual
method of invention utilized by Leibniz in discovering the calculuse

30

Fall 1999

21st CENTURY




nvention of the calculus is one of the greatest discoveries.

It sermtted the solution to a wide range of mathematical

probiems by means of a newly invented language or
nictaphor It was therefore a great creative breakthrough, and
itis theretore entirely predictable that the process by which it
wads vented has never been properly taught to the millions
of people who study the calculus. The basic concept of conti-
nuity, which lor Gottfried Wilhelm Leibniz (1646-1716) was
consistent with the nation of causality, is taught, but in such a
way as to stand it on its head. Continuity, rather than being
something fundamental, gets defined nowadays as something
secondary 1o “sets of points.”

I became interested in the origin of the calculus after hear-
ing a lecture on the subject in Butfalo in 1978. | ordered a
book mentioned by the speaker, Carol White, entitled The
History of the Calculus and Its Conceptual Development, by
Carl Boyer.! This book, in turn, cited The Early Mathematical
Manuscripts of Leibniz? When | came to New York City in
1980, 1 was able to get a copy of the Leibniz work through a
company that searches for out-of-print books. After grappling
with the book for a few weeks, | could get the main idea of
what 1 eibniz was daing with series. | have been trying since
then to figure oul why Leibniz, and not other great mathemati-
cians, such as Pascal, Fermat, and Huygens, made the break-
through. I think the answer to the question requires under-
standing his philosophical method.

Leibniz, Trom his teens, was interested in metaphysics and
scientilic method. His dissertation at age 20, entitled “Disser-
tation on the Art of Combinations,”? concerned the mathe-
matical analysis of complex statements into simpler ones. In
the course of his work, he was forced to present his own defi-
nitions ot commaoenly used words. In fact, the invention of the
calculus was part ot a program to enrich the language of Ger-
manv. this caloulus itself was based upon new poetic
metaphors, applied to previously unsolvabie problems. He
thus enabled cveryone to conceptualize something which
previously had heen extremely difficult.

The Principle of Discovery

Letbniz proposed a project to represent all conceptions of
mathematics, law, phvsical science, and morals by a sort of
universal language, which would contain within itself the very
principle of discovery. He described this as providing an in-
crease in e powers of reason, comparable to the improve-
ment of vision by the invention of the telescope. He called
this the nniversal characteristic. Uniortunately, he could not
enlist the collaboration of any scientists of his time.

Hlowever, 1o hreak the ground for this project, he developed
figorous detinitions, definitions which contained within them-
selves, wherever possible, the element of causality. He in-
sisted on the principle that the predicate is necessarily implied
in the subject. This were true, whether the truths involved
woere contingent truths, or necessary, a priori truths. A first
truth i~ one which predicates something of itself, or denies the
oppostie of s opposite. Tor example, A is A, or A s not non-
AL These truths are called identities. All other truths are re-
ducible to fivst truths by the aid of definitions or of concepts.

Leibniz gave as an example the, until then, axiomatic state-
ment: “The whole is greater than the part.” Here is how he
proceeded:

“The whole is greater than its part,” could be proved by
a syllogism, of which the major term was a definition, and
the minor term an identity. For, if one of two things is
equal to a part of another, the former ts called the less,
and the latter the greater; and this is to be taken as the
definition. Now, if to this definition there be added the
following identical and undemonstrable axiom,
“Everything possessed of magnitude is equal to itself,” i.e.
A= A, then we have the syllogism:

Whatever is equal to a part of another, is Jess than that
other: (by the definition)

but the part is equal to a part of the whole:
{i.e. to itself by identity).

Hence the partis less than the whole. QED?

As Leibniz remarked later, this proof was important, be-
cause without it, someone would be able to assert an excep-
tion to the axiomatic statement. Furthermore, from these con-
siderations came the principle that the predicate or
consequent inheres in the antecedent. He restated it as a prin-
ciple of causality: Nothing happens without a reason. Leibniz
wrote;

In contingent truths however, though the predicate
inheres in the subject, we can never demonstrate this, nor
can the proposition ever be reduced to an equation or an
iclentity, but the analysis proceeds to infinity, only God
being able to see, not the end of the analysis indeed,
since there is no end, but the nexus of terms or the
inclusion of the predicate in the subject, since He sees
everything which is in the series. Indeed this truth arises
in part from His inteliect and in part from His will, and so
expresses His infinite perfection, and the harmony of the
entire series of things, each inits own particular way.”

As an example of such an infinite series he gave the ratio of
the side of the square to the diagonal.

Thus Leibniz's work in mathematics was one aspect of his
philosophical program and grand design. He hoped that theo-
logical questions could be approached as rigorously as math-
ematics. In 1679, writing to John Frederick, Duke of
Brunswick-Hanover, he said:

But disputes are more customary than demonstrations
in philosophy, morals, and theology, and most readers
will have the prejudices about such a project that are
usual about works dealing with these matters; for it will
be thought that the author has merely transcribed and
problematized, and is probably a superficial mind little
versed in the mathematical sciences and, consequently,
hardly capable of true demonstration, In view of these
considerations, | have tried to disabuse everyone by push-
ing myselt ahead a little further than is common in
mathematics, where | believe | have made discoveries
which have already received the general approval of the
greatest men of the day, and which will appear with
brilliance whenever | choose. This was the true reason for
my long stay in France——to perfect myselt in this field, and
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From a portrait by Edelinck, David Smith Collection. as in Howard Eves. An infroduction

to the History of Mathematics (New York: Holt. Rinehart and Winston. 1953)

The young Gotttried Wilhelm Leibniz rights, and Christiaan Huygens (1629-1695). Leibniz's
association with the Dutch-born mathematical-physicist in Paris in 1672, set hin on the path of

discovery of the caleulus,

to establish my reputation, for when | went there | was not
much of a geometrician, which | needed to be in order 1o
set up my demonstrations in a rigorous way. So T want first
to publish my discoveries in analysis, geometry, and
mechanics, and | venture to say that these will not be
inferior to those which Galileo and Descartes have given
us. Men will be able to judge from them whether | know
how to discover and to demonstraie. T did not study math-
ematical sciences for themselves, theretore, but in order
some day to use them in establishing my credit and
furthering picty.”

Series and Difierences
In the course of his work with identities, he noted the fol-
lowing case, whose implications had gone unrecognized.
Consider the series of increasing numbers

A, B C D, F and examine the differences

A+(B A +(C B+ (D Cy+tF~Inh=rF
L M N )

A=l +M+N+O

This was identically true of any series of steadily increasing
or decreasing numbers. e began to look al some simple se-
ries of numbers such as the series of the squares.

0149106 25
357 49

where the second row represents the differences botween suc-
cessive squares. He noticed that the diferences of these diffor-
ences were all 2.
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He devised a table of numbers to represent the formations
of sums and differences by a kind of shorthand.
] ! 1 ] i i I

1 2 3 4 7

1 3 & 10 28
1 4 1020 &4
1 > 15 35 210
1 6 21 56 4622
1 7 2684 210 462 924

Looking at this horizontaily, ony term is the sum of the se-
ries to the feft just above it Thatis, 10 =1+ 2 + 3 + 4. Any
term is the difference ot two just heiow it and to the left. Fur-
thermore, looking at the diagonals,” the terms provide the
coefficients for the elevation for x + | to any power.

For example: ix+ 17 = v + 2x 4 |
(D= 0 3T 4 3t ]

This has a geometrical interpretation. Thus, to fake a square
two units on a side and convert it into one with three untts on
aside, we add on a 1 X1 square and two 2x1 rectangles to
the original squarc (Figure 1),

The expression for (v + 107 has a geometrical interpretation
for cubes.™ Leibniz's table was 1 way of representing series of
numibers, becatise each row was constructed by taking the sum
of the nunibers 1 the row above, aud 1his principle could be
extended as t s one wished, Sums ol sums were second sums
and ditferences of differences woere second differences. We will
see that the notion of a derivative and a second derivative go
back to the simipde ideas of difterences and second differences.

Leibniz looked upon series of numbers as analogous to

contingent causal sequend s traceable to an original cause.
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For example, Be bewins his essay “Art ol Combinations,” with
a proof for the <xisience ol God, based upon all motion in the
universe, of necessity, having a rirst cause. The cause of the
sequence may not be apparent on tirst inspection. However,
the gencrative principle must exisi, for nothing happens with-
out a cause. A series of numbers represents a principle of
causality. We have already seen how some series have a sim-
ple geomeltric mterpretation, such as the series of squares or of
cubes.

the ~enies catled the geometric sories can he considered to
repeescni self-similar growth, as in the formation of a self-sim-
i sharal raversing the surface ot a cone from the base to the
apexsand always maintaining the same angle to the horizon-
tal (higure 2). Consider the seties

L83, 19, 1727, el L.

Thes ot the start, the entire height of the cone is vet to be
fraves-ceh hence we have T After the it tarm of a spiral, one
thiirl G the distance remains. Atter the second turn is com-
pleted, only one-ninth remains. Leibniz noticed something in-
teresting about this series, using his new approach. The
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difterence series of a geometric series is, itself, 4 Qeomelig <o
ries. This follows from the selt-similar ceometry, Loebms e
grammed the calculation by representing each on the terms as
a length; all of these lengths took the same starting poimt -
ure 3.

Because the irst term of the series is 1 and the ast term s
0. the sum of all the successive differences behwoeen the ternms
o1 the series must also equal 1. The successive ditferences,
however, also are a geometric series with the same ratio as the
original series!

Leibniz told his colleague Christiaan Huvgens. in Paris in
1672, that he had achieved these interesting resulis with this
new principle, Huvgens put his voung friend to the tost ask-
ing him to find the sum of the following continuing scries:

T+ 12+ 1/6+1/12+ 1720+ 1730

Leibniz recognized this series as being the diticrence series
of another series (series A, helow/; and. this allowed for s
sum to be readily determined. Here is how he worked it

11]],117

2, 3,

a1 11
12, 20,

series A =1,

e 1
series B=  —
2,00,

Leibniz was aware that series A was not convereent, that is
its sum was infinity, not a particular number. Thorerore, he cul
series A off atter nterms, This means that thore are no— ]
terms in the B series of difterences. Leibniz discovered that the
sum of these n = 1 differences is equal to 1~ im0 i The rea-
son for this is found in the rule Leibniz discovered in his studs
of identities, mentioned ecarlier, that the sum of the diflerences
21st CENTURY

Fall 1999 33



1s equal to the difference between the first and last terms of
the original series.) So, for example, consider the sum of series
B, up through the third term, 1/12. This is the n — 1 term, so n
would equal 4. Then the sum of series B up through this term
should be 1--1/4 = 3/4. Adding the three terms shows that it
is, and the same holds for any term. Now, if we take the ex-
pression 1 - (1/n), describing the sum of series B, and con-
sider it as n gets larger and larger, we see that 1/n gets very

1 1 1
4 12 12 74

1 i 1
5 200 3

o
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1 11 1 1 1 1
7 42 105 140 105 42 7
Figure 4
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small. Thus the expression for the sum of series B approaches
1. This was the answer to Huygens’s test.

Leibniz saw that series of fractions, just like the series of in-
tegers, could also be derived, ad infinitum, from one another.
He constructed another table, which he called the harmonic
triangle (Figure 4). This was based upon the same rule,
namely, that successive rows were composed of the difference
terms of the previous row. (Thus, 1/2 is the difference between
1 and 1/2; 1/6 is the difference between 1/2 and 1/3; 1/12 is
the difference between 1/3 and 1/4, and so forth.)

Leibniz began to think about how this approach, which was
valid for integers and fractions, might also be valid for series
of infinitesimally small numbers. We will soon see how that
was applied.

Huygens was delighted by Leibniz’s discovery. The partic-
ular series he had asked Leibniz to solve had already been
worked out by Hudde. But the approach Leibniz took was
original. Huygens asked Leibniz to study geometry, espe-
cially the determination of the areas of surfaces of revolu-
tion. Leibniz read the writings of Blaise Pascal. In particular
he was fascinated by Pascal’s solution to the surface of a
sphere, conceiving of the sphere as produced by the rotation
of a circle about an axis. Figure 5 is the diagram which Pas-
cal constructed to represent the solution to the surface gen-
erated by rotating a quadrant of a circle about an axis. Pas-
cal was able to transform the surface of the hemisphere
generated by this rotation into a rectangle. This section rep-
resents a stage in Leibniz’s efforts to develop the calculus; it
does not embody the basic conception which he later
achieved. If it is too difficult for the reader, don't worry too
much, just go on to the next section.

In this figure, Ol is a radius. The vertical strip with base RR’
is actually of infinitesimal width. Iis some point located verti-
cally above the width RR’. £B is equal to RR’. EE" is the tan-
gent to the circle at the point |. By the tangent, we mean a line
touching the circle at one and only one point. Then we can
show that the little infinitesimal triangle, EF'B, and the triangle
OID are similar. (The line 1D divides right triangle AIO into tri-
angles IAD and OID, which are similar to each other, as well
as to triangle AJO. That is, they have the same three angles,
and therefore their sides are proportional, or, in Leibniz’s de-
scription, they are indistinguishable apart from their size. FE’B
and JAD are similar because their sides are parallel. Because
IAD and OID are similar, so are EE’B and OI[))

Based on this similarity of EEB and 10D, Pascal concluded
that EE” X DI= RR’ X Ol (the radius), and that this relation-
ship must hold for each vertical infinitesimal strip! To find the
surface for the entire hemisphere, we need the surface gener-
ated by rotating the quadrant about the OR’R axis. Fach verti-
cal strip or sinus, such as RR’FF’, when rotated about the base,
will generate a circular band upon the hemisphere of arc
length FF’, that is, an arc length very close to the length of the
tangent EE’. Pascal then said, that if we were to take the entire
quadrant as divided up into these infinitesimally thin vertical
strips, then

S EE' X DI = OF,

where 3 denotes a process of summation. We get Of2 on the
right side, because Ol is being multiplied in succession by




cach of the lines RR, from O out to T, and their sum is also
Ol

But what is the product FE” = DI¢ 1t is the area of a ¢ylinder
of approximate radius D1 and height EE, provided we also
multiply by 21 We say approximate radius, hecause DI lios
between the two diameters of the fittle cylinder, RE” and R'E’.
The total surface of the hemisphere is ohtained by summing
up all of these little cylinders. Since the two radii are not ex-
actly equal, that is, RF and R’F’, these are not perfect cylin-
ders. This was justified, because as the vertical strip gets thin-
ner and thinner, the tangent line EF” comes closer and closer
to being equal to the arc of the circle FF7. Therefore, the arca
of the infinitesimal cylinder becomes equal to the area of the
intinitesimal circular band on the surface of the sphere gener-
ated by rotaling the quadrant around the axis AQ. It gives the
result: 27 times the radius squared. Notice that what we were
also doing was 1o construct a rectangle of base equal to the
sum of ail the RR’s and of constant height Q. Because we
were summing the RR's alt the wav out 10 the end, the rectan-
gleis, inthis case, a square. This is illustrated by the strips
placed vertically below the line OA. Thus, we have, in fact,
been converting the surface of the sphere into a plane area, in
this case a sqquare.

Now Leibniz was suddenly struck by the observation that
this method, which Pascal had limited to the sphere, could
actually be used tor any surface of revolution. In this case, the
plane arca would be constructed as before by taking the nor-
mal iperpendicular) to the curve at a given point on the curve.
Whereas, in the case of the sphere, the normal was always the
raclius of the circle, in the caswe of some other surface of revo-
ition, say a paraboloid, the normal would be of varying
length. i lowoever, one could still derive the characteristic tri-
angle for the curve at each point and erect below that point,
as before, a perpendicular, not to the curve but to the axis of
rotation below the curve, and of length equal to the original
normal to the curve. One then had the difficult task of sum-
ming all the rectangular strips.

Generating a Curve

Leibniz spent some time working out solutions based upon
this new approach, which, it turns out, was also being utilized
by Barrow, Newton's teacher. Although this method used the
tangent fo the curve, it was not until 1676 that Leibniz began
1o use the method of differences 1o derive langents. In that
year he made a crucial breakthrough, when he realized that
the determination of the tangest to the curve could be oh-
tamed very casily by use of the prnciples he had already been
applying with senes of integers and series of fractions. He also
realized that, becaase determining the tangent to a curve was
equivalent, as we shall see, to finding the successive differ-
ences of the curve, then, because finding areas of surfaces in-
volved a process of summation of a series, it amounted 10 an
inverse tangent problem. That is to say: Given a function or
curve, determine that scecond function for which the first func-
ton or curve was the tangent. I this sounds very complicated,
just take another look at the arithmetic and harmonic trian-
sles. Recognize again, that summation, and the taking of suc-
cessive differences, are the inverse of one another. The pringi-
pleis, infact, childishly simple-- but ondy a great creative
genius was able to see its application, as we are about to

demonstrate,

Leibniz saw that the characteristic triangle, BEE" used in
Pascal’s calculation of the sphere, reflected not just the prop-
erty of the curve at that point, but, of necessity, the process of
generation of the entire curve, of which the point was only
one moment. Therefore, he looked at the process governing
the generation of the curve from the same standpoint from
which he had looked at the formation of all other series.

Consider the parabola with equation y = kx? (Figure 6). This
equation for the parabola, and the equations of other conic
sections, were already known at this time, and Leibniz was
reading about them in the works of Descartes. The line from
Xy, passing through (x,y,), and reaching the vertical line on
the right is the tangent to the parabola. The line from (X, yy) to
(x,V,) is a chord of the parabola.

The tangent in this parabola can be represented by its slope.
For instance, the sjope of the first line can be represented by

Yi =Y
XX

This line is the tangent at (x,,v,).
The slope of the line joining the points (xp v and (x,,y,) s
v,V
v,V

- ¥,

)

We thus can think of the tangent as being the first of the se-
ries of such lines connecting point (x,,y,) with a series of

|
!
Yy 4— (XQ'YE)
i
//
_ /
| -&— This line is tangent to
the parabola at (x; y,)
(X yy)
yio A y
/'//1
T
X, X, X,

Figure 6
THE PARABOLA y = kx?
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Iwo leading opponents of the school of Descartes, the mathematician-philosophers Pierre e Fermat dett, 1601-1665 and
Blaise Pascal (1623-1662), laid the toundation, through their work in number series and peometry, for 1 eibniz's discovor.

points further upr along the parabola. Because it is the first
such Hine, it connects the point (x,.y) with itself. Leibniz saw
that the successive values of the stopes of these lines formed a
series, and that, if he could determine their rule of tormation,
then he could deduce the value of the series at the starting
point. He looked at the successive differences of these values
of the slope by the tollowing simple caleulation. By the known
equation of the parabola,
v, = kx”

Fhen, if X, = oxp =dx,
v, = kix; + dx)?

(also by the known equation of the parabola).

Then, if dy = kix; + dxi= — kx,”,

K

dy=v, oy = kix 4 2x X+ de - ks

,
Note that dy and dx denole hypothetical changes in v and
x;we are condudcting a thought experiment for which Leibniz
was prepared o provide tull justification.
Fhen what was the value of the slope of the curve at the
pomt x,y, 2 Taking the ratio, we get
ly

= ki2x, + dy)
Ix

¢
¢

Here Leibniz introduced his principle of continuity. He con-
ducted a thought experiment. His principle stated:

In any supposed transition ending in any terminus, it is
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permissible to institute a general reasoning in which the
final terminus may also be included.'?

The use o1 these new kinds of numbers, he compared with
the successful use of the imaginary numbeors:

Itwill be sufficient if, when we speak of infinitely ereat
{or, more strictly, unlimitedy, or of infinitely small
fuantities {i.e. the very least of those within ow
knowledge, it is understood that we mean quantitios that
are indetinitely great or indefinitely small; i.e.. as great as
you please, or as small as you please, so that the error that
anyone may assign may be fess than a certain assigned
quantity. Also, since in peneral it will appear that, when
any small error is assigned, it can be shown that it should
be less, it follows that the error is absolutely nothing; an
almost exactly similar kind of argument is used in
different places by Fuclid, Theodosius, and others: and
this scemed to them to be a wondertul thing, although it
could not be denied that it was perfectly true that. from
the very thing that was assumed an crror, it could be
inferred that the error was nonexistent, Thus. by intinitely
great and infinitely small, we understand something
indetinitely great, or something indefinitely small, so that
each conducts itself as a sort of class, and not merely as
the fast thing of a class. If any one wishes 1o understand
these as the ultimate things, or as truly infinite, it can be
done, and that too without falling back upon a
controversy about the reality of extensions, or of infinite
contingims in general, or of the infinitely small. ay, even
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though he think that such things are utterly impossible; it
will be sufficient simply 1o make use of them as a tool
that has advantages for the purpose of the calculation,
just as the algebraists retain imaginary roots with great
profit. For they contain a handy means of reckoning, as
can manifestly be verified in every case in a rigorous
manner by the method already stated. !

In other words, we can include the case of dx = 0. As we
will see, this approach of Leibniz evoked howls of protest:
“How can you divide by zero?” Here is another formulation
Leibniz gave of this principle:

hin a given series one value approaches another value
contmuously, and at length disappears into it, the results
dependent on these values in the unknown series must
also necessarity approach each other continuously, and,
at length, end in cach other. So in geometry, for example,
the case of an ellipse continuously approaches that of a
parabola, as one focus remains fixed and the other is
moved farther and farther away, until the ellipse goes over
into a parabola when the focus is removed infinitely.
Theretore, all the rules for the ellipse must of necessity be
verified in the parabola (understood as an ellipse whose
second focus is at an infinite distance.) Hence, rays
striking a parabola in parallel lines can be conceived as
coming from the other focus, or tending towards it.}2

(Remember that when a light source is placed at one focus
of an cllipse, the light is reflected back to the other focus.
When a light source is placed at the focus of a parabolic mir-
ror, it is reflected out in parallel rays; when parallel rays strike
a parabolic mirror, they are reflected back through the focus
of the parabola))

Leibniz’s solution is based upon the method of hypothesis,
of a thought experiment in which a universal principle is in-
voked. As we shall see, it is this method of hypothesis to
which his adversaries objected. Through the method of hy-
pothesis, he had brought into existence a new kind of num-
ber, denoted by a metaphor, dy/dx, which has permanently
cnriched cur language. Even his most bitter adversaries have
been forced to adopt the metaphor in doing their calcula-
tions, although they have tried to mystify the way it was in-
vented.

Once the rules of obtaining the tangent for a particular type
o function or curve are worked out, the rest is child’s play.
For example, the derivative or tangent to the exponential x is
nx U Leibniz also deduced the derivatives for first deriva-
tives, namely, the second derivatives. In this, he was entirely
unique; tangents for certain curves had already been discov-
ercd, but no one had worked out, or even conceived of, sec-
ond derivatives. The science of wave motion, and much of
mathematical physics, requires the second derivative.

The Principle of Continuity
Texibooks of calculus describe this tangent-determining
process as equivalent to finding the derivative, or dy/dx, at the
point. However, rather than utilizing the principle of continu-
iy, they make continuity itself a secondary idea, one that is
deduced from sets of points. The tangent is referred to as a

limit obtained as one approaches, but never quite reaches, the
point. This is in contradiction to Leibniz, who stated clearly
that the end-point or terminus of the process must be included
in the process. The Leibnizian approach enables us to see the
growth process in the curve. By the principle of continuity, we
can and must relate changes in the discrete to changes in the
continuous manifold where causality is located. For example,
the difference series for cubes shows us how cubes grow by
adding on squares, lines, and points. The calculus, for the first
time, helps us to hypothesize what must be going on in the
continuous manifold between the moments when the new
singularities pop out, that is, when the new lavers are added
onto the faces of the cube.

All growth processes generate a series of numbers. These
series, in turn, are a means of describing the original process.
As we remarked earlier, Leibniz saw that the inverse tangent
calculation could be used to determine surfaces and areas.
This amounted to simply determining what the series of num-
hers must be for which the first series constituted the first dif-
ferences. This very easy approach gave Leibniz solutions to
very difficult, or hitherto unsolved, problems. For example,
Archimedes worked out a very tedious solution to the area un-
der a parabola; his method is called the method of exhaus-
tion, and well it might be, because it is so tedious! As we shall
see, Leibniz’s method makes use of his new language to solve
the problem almost instantly.

Consider the series of strips of infinitesimal width, dy
(Figure 7). Then the area of the rectangular strip ot height kx?
and the width dx is kx*dx, Now, since these strips tormy an in-
creasing series, it must be that there exists a second series for
which they are in turn the differences. How did Leibniz figure
out what that series is? Very simple: just take the inverse of the
difference-forming process. The series of cubes has its differ-
ences in the form

(x+ dx)® — x3 = 3x2dx + Ixen + v’

When dx is made infinitesimally small, then, because dx? is
incomparably bigger than dx’?, and incomparably smailer than
dx, this reduces to 3x%dx.

Therefore, for the parabola, v = kx?, the function

1 kx?

gives the series kx“dx as its difference series. By making the
rectangles infinitesimally narrow, their sum gives an increas-
ingly close approximation to the area under the curve. Re-
member Leibniz's original discovery, that the sum of any se-
ries of differences equals the difference between the first and
last terms of the second series, which gives rise to those differ-
ence. Therefore, the sum of the differences kx’dx is equal to
the value of 3kx? at the right-hand endpoint, minus its value
at the left-hand endpoint. Today this is called the definite
integral.

The Limits of Courant
Having heen through this demonstration of Leibniz’s
method, you may be thinking that surely it excites admira-
tion among today’s mathematicians, and is taught and used
as a model for students. Wrong! All you need to do is to
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examine the vicious slanders and distortions in the following
commentaries on Letbniz, which, like ron filings in a mag-
netic teld, point along the controlling lines of force. Let us
fonkoat the tamous textbook What Is Mathematics? by
Richard Courant, who was director of the prestigious Insti-
tute tor Mathematical Sciences al New York University. He
wriles ol Letbniz:

His achievement is in no way diminished by the tact
that it was Tinked with hazy and untenable ideas which
are apt to perpetuate a lack of precise understanding in
munds that prefer mysticism to clarity.

And turther:

I the mathematical analysis o1 the seventeenth and
most ol the eighteenth centuries, the Greek ideal of clear
and rigorous reasoning scemed to have been discarded.
“Intuiion” and “instinet” replaced reason in many
important instances, '

Leibniz s nisiepresented, and his concept of continuity is
ontitted, in o later section of Courant’s book entitled, “Leibniz’
Notation and the “Intinitely Small.”” Courant there reduces
Leibniz’s powertul metaphor, dy/dx, to a “symbolic notation,”
S0 as o leave out the underlving idea. Courant even implies
that Leibinz really meant the same thing as he:
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Leibniz's altempt to “explain® the derivative started in .
perfectly correct way with the ditierence quotient of a
function v = f{x),

Ay RN N

AX N, X

For the limit, the derivative, which we called 171y
(following the usage troduced later by Lagrangoe),
Leibniz wrote dy/dx, replacing the difference symbol A by
the “differential symbol” ¢/,

After insisting that we can avoid the problem of dividing by
dx = 0, if and only if we resort to the “limiting process,”
Courant attacks Leibniz:

Mystery and confusion only enter it we tollow Leibniz
and many of his successors by saving something like this:

“Ax does not approach zero. Instead, the ‘last value' of
Ax is not zero, but an “infinitely small quantity,” a
‘differential’ called dx; and similarly, Ay has a “Jast’
infinitely small value dy. . . .” Such infinitely smal
quantities were considered a new kind of number, not
zero but smaller than any positive number of the real
number system. Only those with a real mathematical
sense could grasp this concept, and the calcutus was
thought to be genuinely difficult, because not everyvhody
has, or can develop, this sense.'?

Courant’s criticism is basically that which Leibniz's work
encountered from the time that it first appeared. However, the
replacement of the principle of continuity by the idea of limits
was coditied in the T9th century by Augustin Cauchy, and this
is the view espoused by Courant. Cauchy was deploved
against Leibniz and his entire tradition of Continental Science.
Cauchy’s approach is the one taught in today’s mathematics
classes all over the world. it is responsible for mystitying the
calculus and making it so difficult to leamn, especially the dif-
ferential calculus.

Carl Boyer, author o1 The History of the Calculus and Its
Conceptual Development, was a student of Courant. He is
outraged at the idea that Leibniz's description represents phys-
ical reality. He denies that instantancous velodity at a point,
represented by the tangent at the point, actually exists. Rather,
he says, the instantaneous velocity is the limit which the avir
age velocity, referred to above by Courant, approaches as the
intervals get small enough:

Inasmuch as the laws of science are formulated by
induction on the hasis of the evidence of the senses, on
the face of it there can be no such thing in science as an
instantanecus velocity, that is, one in which the distance
and time intervals are zero. The senses arc unable (o
perceive, and science is consequenthy unable to measure,
any but actual changes in position and time. The power
of every sense organ is limited by a minimunt of possible
perception. We cannot, thereiore, speak of motion or
velocity, in the sense of a scientific observation, when
either the distance or the corresponding time interval
becomes so smatl that the minimum of sensation involved




in its measurement is not excited—much less when the
interval is assumed to be zero. . ..

This difficulty has been resolved by the introduction of
the derivative, a concept based on the idea of the limit.
In considering the successive values of the difference

quotient —%—? [distance over time —ed.|, mathematics may

continue to indefinitely make the intervals as small as it
pleases. In this way, an infinite sequence of values L

Fyr oo T oo fthe successive values of the ratio %5) is

t

obtained. This sequence may be such that the smaller the
intervals, the nearer the ratio r, witl approach to some
fixed value L, and such that hy taking the value of nto be
sufficiently large, the difference 11 - r,l can be made
arbitrarily small. If this be the case, this value L is said to
be the limit of the infinite sequence, or the derivative £7(f
of the distance function f1), or the instantaneous velocity
of the body. It is to be borne in mind, however, that this is
not a velocity in the ordinary sense and has no
counterpart in the world of nature, in which there he no
motion without a change in position.!”

On Leibniz’s principle of continuity, Boyer says:

-when called upon 1o explain the transition from finite
to infinitesimal magnitudes, he [Leibniz —ed.] resorted to
a quasi-philosophical principle known as the law of conti-
nuity. We have seen previous applications made of this
doctrine by Kepler and by Nicholas
of Cusa. The latter may have
influenced Letbniz in this respect,
as well as in the philosophical
doctrine of monads. 0

Later Boyer says:

Leibniz justified the limiting
condition by the law of continuity,
whereas mathematics has since
shown that the latter must itself
first be defined in terms of limits.
In this manner of thinking Leibniz
seems still to be striving to make
use of a vague idea of continuity
which we feel we possess and
which had hothered thinkers
since the Greek period.!”

Leibniz vs. Cauchy Empiricism

The above description of the
Cauchy method by Boyer introduces
the empiricist outlook, an outlook that

and axioms of the number system before he even learns about
the derivative. Bertrand Russell, the person philosophically re-
sponsible for the New Math, had an intense distike for Leibniz
because of Leibniz's assertion of universals. Does knowledge
depend, as Russell said, upon induction from particulars, or, do
universals exist¢ Continuity is a universal. So is substance. The
empiricist says: “Can you prove there is something real that you
can call continuity? Relative to what?” Leibnis successtully and
hubristically introduced the idea of continuity into physics and
mathematics. He described it as

a principle of general order which T have observed., | .
This principle has its origin in the intinite, and is
absolutely necessary in geometry, but it is offective in
physics as well, because the sovereipn wisdon, the
source of all things, acts as a perfect gcometrician,
observing a harmony to which nothing can be added.
This is why the principle serves one as a test or Criterion
by which to reveal the error of an ill-conc cived opinion
at once, and from the outsice. oven before a penetrating
internal examination is began. When the difference
between two instances in a siven series, or that which is
presupposed, can be diminished until it becomes smaller
than any given quantity whatever, corresponding,
difference in what is sought, or in their results, must of
necessity also be reduced, or become less than any given
quantity whatever. Or, to put it more commonly, when
two instances or data approach each other continuously,
so that one at least passes oyver into the other. it is
necessary for their consequences or results tor the

Niets Bohr Archive, courtesy AIP Emilio Seqre Visual Archives

culminated in the mind-destroying
New Math of the 1970s. All hypothe-
sis-formation is eliminated. The stu-
dent is forced to go through pages and
pages of definitions of sets of paints

Boring and Boring-er: Twentieth century physicist Niels [Henrik Bohr i1 and mathe-
matician Richard Courant. Courant’s desecration of Leibniz's discovery, quoted within,
and Bohr’s insistence on irrationality as the foundation ol quantum physics have been
two of the greatest contributions to the destruction of the Wostern fradition of scientific
discovery in this century,
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unknowns) to do s also. This depends on a more
general principle: that, as the data are ordered, so the
unknowns are ordered also.

In the case of the tangent, the slopes, which are the un-
knowns, must yield the value at the point in question, i.e. the
tangent at the point, when the data, that is, x and y become
sufficiently close to the values of x and y at that point.

Leibniz directly discussed the nature of universals, such as
continuity, in 16,70, about two years before he began work on
the catculus. He had been asked to write an introduction to a
book by Marius Nizolius, written in 1553, called On the True
Principles of Philosophy, against Pseudo-Philosophers. Ni-
zolius, a nominalist, denied that a “universal is anything more
than all particulars taken simultaneously and collectively, in
Leibniz's words But, Leibniz pointed out, “if universals were
nothing but collections of individuals, it would follow that we
could attain no knowledge by demonstration—a conclusion
which Nizolius actually draws—but only through collecting
individuals, or by induction.”

The nominalist says: “Induction from experience teaches us
that if we put our tingers in the fire they will be burnt.” But,
without realizing it, Leibniz says, the nominalist is using

the tollowing universal propositions, which do not
depend on induction but on a universal idea or definition
ol terms: T the cause is the same or similar in all cases,
the ctfect will be the same or similar in all; 2. the
exstence of a thing which is not senses is not assumed;
and finally, 3. whatever is not assumed, is to be
disreparded in practice until it is proved.

Thus, continuity is not merefy something we infer on the
basis of the observed proximity of a set of points. It works the
other way. Becausce the universe obeys the principle of conti-
nuity, and because our mind, as part of the universe, obeys
this principle, we can make inferences about the way succes-
sive points relate to one another, and about the way physical
processes must work.

Leibniz made a useful reference to series in this essay when
he said:

Induction in itself produces nothing, not even any
moral certainty, without the help of propositions
depending, not on induction, but on universal reason.
For if these helping propositions too were derived from
induction, they would need new helping propositions,
and so on to infinity, and moral certainty would never
be obhtained. By induction alone, we should never
perfectly know the proposition that the whole is greater
than its part, for somecone would soon appear, and for
some reason, deny that it is true in cases not yet
obscrved. 18

Thus, to explain the formation of series of numbers, Leib-
niz sought the process that generated the entire series. Begin-
ning with the universal principle of identity, he was able to
show how ane series can be derived from another series.
Also, with curves, he saw that there is a single process which
generates the whole curve, but which is revealed at each very
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small interval of the curve. That is the true story of the inven-
tion of the calculus.

Ernest Schapiro, M.D., an organizer for Lvndon LaRouche s
political movement, was a member of the hiological holo-
caust task force, set up by LaRouche in 1974, and he co-
authored two Executive Intelligence Review Special Reports
on the AIDS crisis, produced in the mid-1980s.
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